Простейший детектор скрытой проводки на скорую руку. Приборы для поиска и диагностики подземных инженерных коммуникаций Методики определения повреждения кабеля в земле

Третий глаз (Часть 3)

Приборы для поиска и диагностики подземных инженерных коммуникаций

Благодаря многонаправленным антеннам повышается чувствительность приборов и уменьшается вероятность ошибок. Оператору больше нет необходимости ходить зигзагами по исследуемой территории – стоит только нажать на кнопку питания и выбрать тип нужной трассы, и прибор сам найдет ее и отобразит на экране. Такой подход позволяет пользоваться локатором даже работникам с невысокой квалификацией и практически без специального обучения.

Акустические течеискатели (локаторы)

Достаточно широко применяется ряд методов нахождения подземных коммуникаций, основанных на акустической локации. Часто такие методы используются для поиска утечек воды и газа в трубопроводах из любых металлических и неметаллических материалов. Поэтому приборы для поиска утечек так и называются – течеискатели.

Акустический неактивный метод

Вытекая из трубы, жидкость или газ издает шум, который может уловить акустический течеискатель с функцией пассивного обнаружения, иначе говоря – неактивный акустический детектор. Акустические датчики-микрофоны, которые могут быть контактными, прикладываемыми непосредственно к грунту, или бесконтактными, улавливают звуковые волны, распространяющиеся по грунту. Когда оператор подходит к месту утечки, шум становится сильнее. Определив точку, где звук самый сильный, можно установить местонахождение утечки. Этот метод работает при залегании трубопровода на глубине примерно до 10 м.

Если имеется доступ к трубе через смотровые колодцы, можно прослушивать шум, прикрепив микрофон к трубе или рукоятке вентиля, так как звуковые волны лучше распространяются по материалу трубопровода. Этим способом можно выявить участок трубы между двумя колодцами, на котором есть протечка, а далее, по силе звука, к какому из колодцев она ближе. Точность метода невелика, зато им можно выявить утечку на намного большей глубине, чем при прослушивании с поверхности. Если у прибора имеется функция псевдокорреляции, он может по разности силы звука рассчитывать расстояние до места утечки и уточнять результат поиска.

В комплект прибора обычно входят наушники, мощный усилитель звука (усиление до 5000–12 000 раз), фильтр помех, пропускающий звуки только той частоты, которые заложены в его «память», а также электронный блок, который обрабатывает и записывает результаты и может составлять отчеты. Некоторые приборы совместимы с компьютером.

Считается, что использование течеискателей позволяет сократить расходы на устранение аварий на коммунальных трубопроводах до 40–45%.

Однако у акустических течеискателей есть ряд недостатков. Результаты исследований сильно зависят от наличия шумовых помех, поэтому лучше всего они работают в условиях тишины при исследовании трубопроводов неглубокого заложения – до 1,5 м. Впрочем, современные приборы оснащены микропроцессорами цифровой обработки сигнала и фильтрами, отсеивающими шумовые помехи. Необходимо точно знать маршрут прокладки исследуемого трубопровода, чтобы пройти точно над ним и прослушать шум от утечки в разных точках.

Акустический активный метод – по генератору ударов

В ситуации, когда необходимо отыскать неметаллическую трубу и поэтому нельзя использовать электромагнитный трассоискатель, а к какой-то части трубы имеется доступ, одной из альтернатив является звуковой активный метод. В этом случае применяют генератор звуковых импульсов (ударник), который устанавливается в доступном месте на трубе и методом ударного воздействия создает акустические волны в материале трубы, которые затем улавливаются с поверхности земли акустическим датчиком прибора (микрофоном). Таким образом можно определить местоположение трубопровода. Конечно, этот метод можно использовать и на металлических трубах. Дальность действия прибора зависит от разных факторов, таких как глубина заложения и материал трубы, а также вид грунта. Сила и частота ударов могут регулироваться.

Акустический электрический – по звуку электрического разряда

Если в месте повреждения кабеля можно создать искровой разряд с помощью генератора импульсов, то звук от этого разряда можно прослушивать с поверхности грунта микрофоном. Для возникновения устойчивого искрового разряда необходимо, чтобы величина переходного сопротивления в месте повреждения кабеля превышала 40 Ом. В состав генератора импульсов входят высоковольтный конденсатор и разрядник. Напряжение с заряженного конденсатора через разрядник мгновенно передается на кабель, возникшая электромагнитная волна вызывает пробой в месте повреждения кабеля, и раздается щелчок. Обычно генерируется по одному импульсу через несколько секунд.

Этот метод применяют для локации кабелей всех видов с глубиной залегания до 5 м. Применять этот метод для поиска повреждений у кабелей в металлическом рукаве, проложенных открыто, не рекомендуется, так как звук хорошо распространяется по металлической оболочке и точность локализации места будет невысокой.

Ультразвуковой метод

В основе данного метода лежит регистрация ультразвуковых волн, не слышных человеческому уху. При выходе находящихся под высоким давлением (или наоборот – подсосе при высоком разрежении) жидкости или газа из трубопровода через трещины в сварных швах, неплотности в запорной арматуре и уплотнениях возникает трение между молекулами вытекающего вещества и молекулами среды, в результате генерируются волны ультразвуковой частоты. Благодаря коротковолновой природе ультразвука оператор может точно определять местоположение утечки даже при сильном шумовом фоне, в наземных газопроводах и подземных трубопроводах. Также с помощью ультразвуковых приборов обнаруживают неисправности в электрооборудовании – дуговые и коронные разряды в трансформаторах и распределительных шкафах.

В состав ультразвукового течеискателя входят датчик-микрофон, усилитель, фильтр, преобразователь ультразвука в слышимый звук, который транслируется наушниками. Чем ближе микрофон к месту утечки, тем сильнее звук в наушниках. Чувствительность прибора регулируется. На ЖК-экране результаты сканирования отображаются в цифровом виде. В комплект может входить контактный щуп, с помощью которого также можно прослушивать колебания. Для активного выявления мест негерметичности в состав прибора включают генератор (передатчик) ультразвуковых колебаний, который можно поместить в исследуемый объект (например, емкость или трубопровод), излучаемый им ультразвук будет выходить наружу через неплотности и трещины.

Преимущества. Метод простой, для поиска утечек не требуется сложной процедуры, обучение работе с прибором занимает около 1 часа и при этом метод весьма точный: позволяет обнаруживать утечки через мельчайшие отверстия на расстоянии 10 м и более на фоне сильных посторонних шумов.

Корреляционный метод

В данном случае на трубу по обе стороны от места утечки (например, в двух колодцах или на запорной арматуре на поверхности земли) устанавливают два (или больше) датчиков виброакустических сигналов (пьезодатчиков). От датчиков сигнал передается в прибор по кабелям или по радиоканалу. Поскольку расстояние от датчиков до места утечки разное, звук от утечки будет приходить к ним в разное время. По разнице во времени поступления сигнала на датчики электронный блок-коррелятор рассчитывает функцию кросс-корреляции и место нахождения повреждения между датчиками.

Данный метод применяется на сложных для акустического сканирования зашумленных участках, таких как городские и заводские территории.

Точность расчета зависит от точности измерения времени прохождения сигналов прибором, точности измерения расстояния между датчиками и точности значения скорости распространения звука по трубе. Как утверждают специалисты, при правильном проведении данных измерений надежность, чувствительность и точность корреляционного метода значительно превышают результаты других акустических методов: отклонение не более 0,4 м и вероятность обнаружения утечек составляет 50–90%. Точность результата не зависит от глубины залегания трубопровода. Метод очень устойчив к помехам.

Недостаток корреляционного метода состоит в том, что результаты искажаются при наличии неоднородностей в трубах: засоров, изгибов, ответвлений, деформаций, резких изменений диаметра. Корреляционные течеискатели – дорогостоящие и сложные приборы, работать на которых могут только специально подготовленные специалисты.

Газоискатели

Для выявления утечек газов из трубопроводов используются газоискатели. Микронасос, который входит в состав прибора, закачивает пробу воздуха с проверяемого места. Отобранная проба сравнивается с эталонным воздухом (например, методом нагревания спиралью: при нагревании пробы с газом и воздуха температура спирали будет разная), и прибор фиксирует наличие в пробе газа. Также имеются газоискатели (сравнивающие пробу и эталонный воздух) на основе других принципов. Такое оборудование способно уловить газ или другое опасное летучее вещество даже в том случае, если его в воздухе содержится всего 0,002%!

Газоискатель – легкий и компактный, удобный и простой в эксплуатации прибор. Однако он весьма чувствителен к температуре окружающего воздуха: при слишком высокой или низкой температуре его работоспособность снижается и даже может стать нулевой, например при температуре ниже –15 и выше +45 °С.

Комплексные приборы

Как мы видим, у локаторов каждого типа имеются определенные ограничения и недостатки. Поэтому для служб, эксплуатирующих подземные коммуникации, современные трассопоисковые приборы часто выполняются комплексными, состоящими из аппаратуры разных типов, например, в них вместе с электромагнитным трассоискателем могут входить акустический локатор, георадар и пирометр, а акустический приемник может иметь еще и канал приема электромагнитных сигналов. Поиск может проводиться одновременно на частотах электромагнитных и радиоволн, либо прибор может переключаться в режимы приема магнитных, радио- или акустических волн. Причем модульная конструкция приборов позволяет комплектовать комплексы индивидуально для каждой компании-клиента в зависимости от его конкретных задач. Использование комплексных приборов повышает вероятность точного нахождения местоположения объекта, облегчает и ускоряет проведение работ по обслуживанию подземных коммуникаций.

Инновации в отрасли оборудования для поиска подземных коммуникаций

Запись координат объектов поиска в GPS/ ГЛОНАСС

У некоторых современных трассопоисковых приборов есть возможность определять координаты обнаруженного объекта по GPS/ ГЛОНАСС и записывать их (даже онлайн) в базу данных цифрового плана участка, созданного методом автоматизированного проектирования CAD, обозначив там выявленные инженерные коммуникации. Параллельно данные поступают на компьютер в головной офис компании. Информация может быть представлена в виде простых меток, которые помогут оператору экскаватора визуально ориентироваться на схеме, показанной на дисплее машины. Еще проще будет работать оператору, если управление экскаватором частично автоматизировано и связано с GPS/ ГЛОНАСС – автоматика поможет избежать повреждения коммуникаций.

Новинки трассопоискового оборудования

Ведущие разработчики данного оборудования предлагают сканеры, которые сканируют стройплощадку и на основе анализа характеристик местного грунта и прочих условий на строительном объекте автоматически указывают оптимальную величину частоты, на которой рекомендуется вести локацию подземных коммуникаций. Для достижения наилучшей чувствительности некоторые трассоискатели оснащаются функцией автоматического подбора оптимальной частоты сигнала – это удобно в условиях «грязного» эфира и когда под землей проходит сразу несколько трасс.

Появились приборы с двумя выходами, которые могут теперь подсоединяться и вести исследования одновременно двух инженерных коммуникаций.

Приборы оснащаются высококонтрастным жидкокристаллическим дисплеем, изображение на котором видно даже при освещении прямыми солнечными лучами, информативность дисплеев повышается: в режиме реального времени отображаются все необходимые параметры: глубина коммуникации, направление движения к ней, интенсивность сигнала и т. п. На экране прибора даже может формироваться наглядная схема расположения коммуникаций, трассоискатель способен одновременно «видеть» до трех подземных коммуникаций, «рисуя» на большом дисплее карту их расположения и пересечений.

Георадары (Подробнее о георадарах см. Часть 1)

Работа георадара основана на излучении электромагнитного импульса в грунт и регистрации отраженного сигнала от подземных объектов и границ среды с разными электрофизическими свойствами.

Области применения георадара огромны: он позволяет определять глубину залегания коммуникаций, местоположение пустот и трещин, зоны переувлажнения и уровень грунтовых вод, характер залегания геологических границ, зоны разуплотнения, незаконные врезки, дефекты земляного полотна, наличие арматуры, мин и снарядов, а также другие объекты.

Основное распространение георадиолокация получила в области поиска подземных коммуникаций, во многом благодаря тому, что этот метод обнаруживает коммуникации из любого материала, в том числе неметаллические.

Для поиска подземных коммуникаций подбирают георадар с антеннами, имеющими среднюю центральную частоту (200–700 МГц). Поиск на таких частотах обеспечивает глубину зондирования до 5 м, а также позволяет находить кабели и трубы малого диаметра.

При необходимости обследования больших территорий используются георадарные системы с массивом антенн, устанавливаемые на транспортное средство. Такие системы сканируют до нескольких гектаров в день.

Современные георадары могут находить подземные коммуникации в режиме реального времени и имеют возможность совместного использования с GPS-оборудованием, что позволяет привязываться к местности и, используя полученные координаты, переносить георадарные данные в CAD-системы, а также наносить обнаруженные коммуникации на имеющиеся схемы.

Долгое время считалось, что георадар – это сложная в понимании и управлении техника, однако с появлением современных технологий и продвинутого программного обеспечения ситуация в корне изменилась. Георадары лидирующих производителей имеют максимальную автоматизацию получения и интерпретации данных, что исключает ошибки, связанные с человеческим фактором. Таким образом, на сегодняшний день георадар является незаменимым помощником в поиске подземных коммуникаций и по праву может считаться «третьим глазом» инженера-изыскателя.

Гражданин К. давно мечтал поселиться где-нибудь на природе, вдали от шумной суетливой цивилизации большого города, среди тишины и покоя гармонии мира. И вот его мечта сбылась: он купил небольшой земельный участок на окраине села под строительство, в хорошем месте и даже с небольшим заброшенным садом… но тут-то ему пришлось столкнуться с таким проблематичным вопросом, как поиск трасс труб и кабельных линий, ведь не зная где они расположены:

  1. При строительстве можно повредить их, а если кабель находится под напряжением, то и подвести под риск собственную жизнь;
  2. О подключении к электричеству, газо- и водопроводу, не зная, где он проходит, можно забыть.

Но как найти эти злосчастные линии? Разрывать весь грунт и искать наугад?.. Вовсе нет! Просто нужно обратиться к помощи такого полезного прибора, как трассоискатель, позволяющего отыскать линии быстро и безопасно. Сегодня прибор можно приобрести в каждом специализированном магазине, можно изготовить трассоискатель своими руками. А как, мы и расскажем далее. Но, прежде, стоит разобраться: что это за прибор такой, трассоискатель.

Немного теории

Итак, трассоискатель - это уникальный прибор, позволяющий обнаружить линию прохождения кабеля или залегания труб. Современные устройства делятся на два типа по принципу работы;

  • Контактный принцип;
  • Индукционная разновидность.

Контактный принцип используется в случае разрыва кабеля, находящегося под напряжением.

Прибор, работающий по индукционному принципу, способен определять, как кабель под напряжением, так и пассивную трассировку, то есть, не подающую активных сигналов подземную коммуникацию. Индукционный метод более сложный и базируется на улавливании устройством высоких частот и регистрации данных показателей на специальном индикаторе.

Трассоискатели также подразделяются на одно- и многочастотные. Первые - наиболее приемлемый вариант, такие приборы несложно смонтировать самостоятельно, и применяются они для определения коммуникаций, расположенных под грунтом в том случае, когда одни трассы не пересекают другие, и, таким образом, не перекликаются исходящие от них сигналы.

Многочастотные устройства - более сложная конструкция и используются для определения сигналов трасс в случае высокой плотности кабельных линий и трубопроводов. Мультичастотные устройства способны определять указанную в программе частоту, не сбиваясь на другие. Современные приборы оборудованы программным обеспечением, что значительно облегчает работу, которая для пользователя заключается в одном нажатии на клавишу и прочтении полученной информации, высветившейся на индикаторе.

Технология сборки

Устройство обладает несложной конструкцией и состоит из двух компонентов - приемника, на который поступает сигнал, и генератора, регулирующего работу прибора. Чем сильнее генератор, тем мощнее будет прибор и значительнее дальность расстояния, на котором он способен определять линии. Так, устройство, работающие от аккумулятора в 24 В, способно трассировать местность на 4 км и работать около ста часов бесперебойно. На работающий по такому принципу трассоискатель схема приведена ниже.

Как видно из чертежа, устройство комплектуется следующим образом: на транзисторе Т1, П14 собирается модулятор и генератор. При условиях, что выключатель приходит в разомкнутое состояние, транзистор с цепью базы создают генератор частой 1 кГЦ. И при включении контура, даже частичном, становится возможным увеличить нагрузку на прибор. Таким образом, при включении конденсатора, резко увеличивается мощность генератора, и он начинает работать в УКВ диапазоне.

Чтобы сконструировать трассоискатель кабельных линий своими руками, необходимо тщательным образом проработать его вторую часть, приемник.

Здесь важнейшим условием является тот факт, что магнитная антенна настраивается на напряжение звуковых частот генератора. Проходящий через транзисторы сигнал создает стабильную схему, а транзисторные каскады обеспечивают необходимое усиление, что гарантирует бесперебойную работу устройства.

Чтобы смонтировать кабельный трассоискатель схема на который приведена выше, потребуется следующее:

  • Берем гетинаксовую плату, которая будет основой будущего прибора.
  • Устанавливаем на переднюю панель клеммы питания.
  • Наматываем на ферритовое кольцо (диаметр 0.8 см) трансформатор первый, а второй - на стальной сердечник.

При сборке руководствуйтесь чертежами, чтобы не допустить ошибки.

Как сделать трассоискатель из старого плеера?

У многих в подвалах и на антресолях можно найти массу занятных вещиц, которые при умелой доработке, могут еще прослужить своему хозяину не один год. Так, из простого старого плеера можно сконструировать трассоискатель.

Добавляем клеммы питания и займемся поисковой катушкой. Для этого разбираем РКН и снимаем контактную катушку. Чтобы демонтировать пластину реле, нужно зажать ее в тисках и при помощи молотка выбить ее из катушки. Эта работа займет пару секунд не более. Теперь, когда все детали для будущего прибора получены, соединяем обмотки и вставляем в сердцевину стержень, который зажимаем с двух сторон.

В качестве зажимов может выступить любой подручный предмет, например пластмассовая трубка, которую достаточно только немного подточить, согнуть, чтобы деталь подходила по размеру и выполняла свою рабочую функцию фиксатора. Потратим еще пару минут на корректировку всего устройства, проверяем разводку, разъемы, надежность конструкции. Затем припаиваем провод к катушке, который после должен быть соединен с усилителем.

Работа готова. Как видите, это совсем не сложно для тех, кто имеет хотя бы элементарные знания в электронике.

Теперь вы знаете, как собрать трассоискатель своими руками схемы и поэтапная инструкция поможет вам выполнить эту нехитрую работу быстро и качественно. А нам только остается напоследок пожелать вам удачи и доброго дня!

Значимость точной информации.

Информация о местоположении и фактическом состоянии подземных трубопроводов и кабельных линий является самым важным результатом обследования этих коммуникаций.


Достоверность и точность результатов обследования являются единственными характеристиками, которые могут представлять реальную ценность. Неточная или искаженная информация может стать причиной ошибок в интерпретации полученных данных и явиться поводом для ненужных затрат. Еще хуже, если в результате неполных или неточных данных обследования подвергаются опасности жизнь и здоровье людей.


Окончательное заключение о состоянии объекта или его отдельного элемента может быть сделано на основании его визуального обследования, однако, это представляется невозможным для подземных кабелей и труб. Опыт, знание обследуемой рабочей зоны, использование чертежей или схем, а также эффективное использование трассоискателей могут обеспечить получение такой информации, которая позволит дать практически точное заключение о состоянии элементов объекта. В некоторых случаях, могут быть участки, на которых невозможно точно установить состояние коммуникаций. Эти зоны всегда должны быть локализованы для обеспечения возможности проведения дальнейшего обследования.


Локация подземных трубопроводов и кабелей является очень ответственным видом деятельности: все операции должны проводиться методично, аккуратно и с большим вниманием. В данном цикле статей я постараюсь дать структурированную и, по возможности, полную информация о методах использования трассоискателей для получения точных и достоверных данных.


Методы локации подземных кабелей и труб

В настоящее время наибольшее распространение получили следующие методы обнаружения и трассировки подземных кабелей и трубопроводов:

1 Доступная документация

Схемы и чертежи, имеющиеся в коммунальных службах или городской администрации, содержат огромное количество информации о наличии и положении подземных труб и кабелей. При проведении обследования местности в первую очередь важно получить любую доступную информацию и имеющуюся документацию. Информация может быть (и, как правило, является) неточной или неполной, однако эта информация будет являться той самой отправной точкой для оператора при выполнении обследования местности. Кроме того, намного проще подтвердить или дополнить имеющуюся информацию, чем начинать обследование местности «вслепую». До начала проведения работ на объекте очень полезной может оказаться любая информация, даже если она только позволяет приблизительно узнать, чего можно ожидать на объекте.


2 Георадары

Георадар — радиолокатор, который в отличие от классического, используется для зондирования исследуемой среды, а не воздушного пространства. Исследуемой средой может быть земля (отсюда наиболее распространенное название — георадар), вода, стены зданий и т. п.


Современный георадар представляет собой сложный геофизический прибор, создаваемый при соблюдении определенных технологий. Основной блок состоит из электронных компонентов, выполняющих следующие функции: формирование импульсов, излучаемых передающей антенной, обработка сигналов, поступающих с приемной антенны, синхронизация работы всей системы. Таким образом, георадар состоит из трех основных частей: антенной части, блока регистрации и блока управления. Антенная часть включает передающую и приемную антенны. Под блоком регистрации понимается ноутбук или другое записывающее устройство, а роль блока управления выполняет система кабелей и оптико-электрических преобразователей (по материалам Wikipedia).


Георадар

Методы поиска подземных коммуникаций, основанные на использовании электромагнитных волн, были разработаны для точного обнаружения, определения габаритов и расстояния (глубины залегания) до подземных объектов. Локация подземных коммуникаций, в частности пластиковых трубопроводов или волоконно-оптических кабелей связи стала разумным и естественным развитием этого метода. Очевидно, что с помощью радара достаточно трудно (в большинстве случаев, практически невозможно) отличить пластиковые трубы с водой от плотного грунта (например, влажная глина и земля). Однако георадары позволяют получить приблизительную картину расположения подземных кабелей и труб в различных типах грунтов. При этом, даже в благоприятных условиях применения радаров необходимо иметь соответствующее представление о том, что находиться или должно находиться под землей.


Высокая проводимость мелкозернистых осадочных пород – глин и наносов – резко снижают возможности прибора, а скальные и разнородные осадочные породы рассеивают его сигнал. Высокий уровень грунтовых вод также может отрицательно повлиять на результаты обследования. Также стоит отметить, что информация, получаемая по результатам работы георадара, очень сложна и требует интерпретации специалистом высокой квалификации и с большим опытом. Сложность, высокая стоимость и зависимость от условий применения приводят к нецелесообразности использования этого метода для ежедневной работы. Однако, вполне вероятно, что в самом ближайшем будущем этот метод станет полезным при составлении схем подземных коммунальных коммуникаций.


3 Акустическая локация

Акустические методы получили наибольшее распространение при поиске утечек воды в подземных трубопроводах. Однако, разновидность этого метода получила достаточно широкое распространение для трассировки подземных водопроводов, в особенности пластиковых трубопроводов. Сейчас применение этого метода ограничено обнаружением и локацией водопроводов, тем не менее дальнейшее развитие подобных методов может расширить сферу их применения, в частности, для использования при трассировке подземных пластиковых газовых труб.


4 Инфракрасная термография

Температура подземных кабелей и труб может быть отличной от температуры окружающего грунта. Определение этой разности температур может быть достаточно эффективным методом локации подземных труб и кабелей. Однако, эффективность этого метода сильно зависит от окружающих условий и значительно снижается в результате воздействия таких факторов, как солнечный свет или ветер. На практике эти методы имеют узкоспециальное применение - поиск пустот в канализационных коллекторах, а также - локация разрывов, трещин и мест повреждений изоляционного покрытия на отдельных участках теплотрасс.


5 Лозоискательство

Это самый старый способ поиска воды и подземных трубопроводов. Для поиска лозоискателями используется ветка дерева или лоза, а также ее многочисленные варианты в виде сварочных электродов и т.п. Этот интересный способ требует специфических навыков и интуиции. Я лично неоднократно наблюдал работу таких «умельцев» и могу сказать, что результаты их работы меня впечатлили. Однажды специалист одного из Водоканалов прошел по трассе силового кабеля с двумя электродами, показав направление кабеля и муфты. Длина трассы была порядка 130 метров, кабель часто менял свое направление, параллельное обследование с помощью электромагнитного трассоискателя полностью подтвердило результаты, полученные с помощью электродов. Конечно, трудно ожидать широкого использования этого метода, а к достоинствам следует отнести низкую стоимость и небольшой вес оборудования;-)


6 Электромагнитная локация

Это универсальный и самый распространенный метод локации и трассировки подземных коммуникаций. Достоинством этого метода является возможность получения "из под земли" большого объема информации, которая не может быть получена при использовании любой другой технологии. Этот метод имеет следующие отличительные черты:

Поиск с поверхности земли границ зон залегания подземных кабелей и труб;
- Трассировка и идентификация определенных линий;
- Трассировка и идентификация канализационных коллекторов или других неметаллических каналов и труб, к которым есть доступ; локализация закупорки и повреждений (с использованием миниатюрного проталкиваемого передатчика-«зонда»;
- Измерение глубины залегания (расстояния от поверхности грунта до центра электромагнитного поля вокруг коммуникации) непосредственно с поверхности земли;
- Портативность и небольшой вес оборудования (легко удерживается в руках) и возможность эффективного использования даже неопытными операторами;
- Возможность использования трассоискателей с любыми типами грунта и даже под водой;

Напоминаю, что все статьи предыдущего конкурса, а также правила и итоги можно увидеть .

Тема статьи схожа с предыдущей:

Генератор высоковольтных импульсов для поиска обрыва в линии эл.передачи

Этот прибор позволяет определить место разрыва линии электропроводки дома. Таким образом, можно легко отремонтировать электропроводку в доме в случае обрыва.

Такой способ в электротехнике называют акустическим. Он основан на прослушивании в месте повреждения звуковых колебаний (хлопков) вызванных искровым разрядом. Обычно разрыв в электропроводке колеблется в пределах 0,5 … 2 мм. Такой разрыв легко пробивает напряжение 1 … 3 кв постоянного тока. Упрощенная схема на рис.1.

Uu- источник повышающего напряжения до пробоя.

Ru- внутренние сопротивление источника напряжения.

Если в месте пробоя будет низкое сопротивление, хлопка не будет. Источник будет разряжаться и напряжение не повысится. Во избежание этого нужно в цепь схемы поставить разрядник (Искусственный разрыв около 1 мм). А для того, чтобы пробой был хорошо слышен и виден добавить высоковольтный конденсатор. Схема устройства на рис.2.

Обычно обрыв проводки находится на глубине 1…2 см в штукатурке или в соединительной коробке. Место повреждения легко обнаруживается по световой вспышке и по звуку хлопка разряда.

Перед поиском места обрыва на участке электросети, нужно отключить все электро потребители. Высоким напряжением аппарата можно повредить изоляцию обмоток эл. двигателей и других электронных устройств. И обязательно нужно соблюдать технику электробезопасности (3).

Полезно перед этим воспользоваться генератором высокой частоты и искателем и приблизительно определить место повреждения (2). И так же замерить ёмкость проводки до места повреждения кабеля АППВ 2*2,5 ёмкость 1м примерно равен 80-100 пф. После подключить к высоковольтному прибору (см. схему прибора рис.4.) питание ~220 v и к выходным клеммам «0» и «1» или «2» линию с обрывом. Нажать кнопку SA1 и держать около 3 сек. До разряда. Если кнопку держать дольше разряды будут повторятся по мере накопления напряжения на конденсаторе C2.

Само устройство прибора состоит из не дефицитных деталей. Трансформатор Тр1 от строчной развертки чёрно белого телевизора. Разрядник P35 можно заменить самодельным.

Он изготовлен из кусочка фольгированного стеклотекстолита размерами 30*30 с круглым отверстием в центре диаметром 15 мм. По середине фольга удалена. По краям 2 отверстия для подключения проводов см. рис.3.

С каждой площадки навстречу друг другу припаяны 2 кусочка медного провода диаметром 1 мм с зазором 3 мм. В зазоре будет происходить пробой, с расчетом 1 мм=1кв. Такой разрядник P1 установлен в схеме для предохранения высоковольтного трансформатор Tp1. При разряде в заводском P35 звук очень слабый и не мешает слушать разряд в эл. проводке дома.

Схема прибора

Прибор представляет собой генератор высоковольтных импульсов на тиристоре. Конденсатор C2 К75-53 1 мкФ на напряжение 5 кВ. Его можно заменить несколькими конденсаторами меньшей ёмкости, но суммарная ёмкость должна быть около 1 мкФ, рабочее напряжение не меньше 5 кВ.

Схема управления тиристром ST1 взята из (4). Номиналы деталей схемы указанны на принципиальной схеме. Прибор собран в небольшом пластиковом кейсе, см.фото. Неоновая лампа Л1 нужна для сигнализации напряжения сети 220v на питание прибора.

Применение прибора для определения обрыва

Теперь два примера применения прибора из моей практики.

1. Снижение кабеля от УКВ антенны. Сопротивление между экраном и центральной жилой по показанием тестера 100 Ом. Должно быть около 5…10 ОМ. При подключении прибора к кабелю один человек нажимал на кнопку SA1, а я наблюдал за антенной и кабелем вечером. Под правым болтом подключения кабеля к шлейфу антенны были видны искры. Правый болт был сильнее подтянут. Переходное сопротивление упало до 8 Ом.

2. Необходимо было отремонтировать электро проводку в доме. Потухла эл.лампа освещения в комнате. Лампа цела и исправна. Лампу вывернул. Концы в патроне закоротил. К отдельной линии отходящий к патрону лампы подключил провода отходящие от прибора «0» и «1». При нажатии на кнопку SA1 прибора в месте разрыва в проводке выходящего с потолка раздавались разряды. Ликвидация разрыва легко устранена.

Фото прибора.

Литература:

  • Радиолюбитель № 2 1997г. Ст 24.
  • Радио мир №7 2014г. Ст 27 и поправка Радио мир № 9 2014г. Ст 32.
  • Радио №5 2015г. Ст 54.
  • Радио №1 2008г. Ст 27.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Если статья понравилась, проголосуйте за неё здесь и сейчас:


Акустический метод практически универсален и во многих кабельных сетях является основным методом. Им можно определять повреждения различного характера: однофазные и междуфазные замыкания с различными переходными сопротивлениями, обрывы одной, двух или всех жил. В отдельных случаях возможно определение нескольких повреждений на одной кабельной линии. Метод применяется для определения мест повреждения в силовых кабельных линиях, носящих характер «заплывающего» пробоя, а так же может быть применен при замыканиях с переходным сопротивлением, обеспечивающим устойчивые искровые разряды, и при обрыве жил кабеля.

Сущность метода заключается в создании в месте повреждения мощных электрических разрядов и фиксации на поверхности земли звуковых колебаний с помощью чувствительных приемных устройств. Для создания мощных разрядов в месте повреждения электрическая энергия предварительно накапливается в высоковольтных конденсаторах или в емкости самого кабеля путем заряда от выпрямительной установки.

Запасенная энергия пропорциональна емкости {С} и квадрату напряжения {U}.

При достижении напряжения пробоя эта энергия расходуется за очень короткое время (десятки микросекунд) и в месте повреждения происходит мощный удар. Звук от этого удара распространяется в окружающей среде и может быть прослушан на поверхности земли. Обычно периодичность разрядов составляет 2-3 секунды.

В зависимости от характера повреждения кабеля собирают соответствующую схему измерения.

Рисунок. Схема определения места повреждения при замыкании между жилой и заземленной оболочкой (землей): 1 – жилы кабеля; 2 – оболочка кабеля; 3 – место повреждения.

Напряжение пробоя искрового промежутка не должно превышать 70% испытательного напряжения для кабеля данного типа. Практически для силовых кабелей с рабочим напряжением до 1, 6, 10 и 35 кВ напряжение импульсов не должно превышать 8, 25, 30 и 40 кВ соответственно.

Рисунок. Схема определения места повреждения при замыкании между жилой и заземленной оболочкой (землей) при использовании в качестве зарядной емкости жил кабеля: 1 – жилы кабеля; 2 – оболочка кабеля; 3 – место повреждения.

При повреждениях с заплывающим пробоем и обрывах жил напряжение на кабель подается непосредственно от выпрямительной установки, при этом напряжение пробоя в месте повреждения может быть доведено до испытательного.

Рисунок. Схема определения места повреждения при заплывающем пробое: 1 – жилы кабеля; 2 – оболочка кабеля; 3 – место повреждения.

Рисунок. Схема определения места повреждения при обрыве жил кабеля: 1 – жилы кабеля; 2 – оболочка кабеля; 3 – место повреждения.

Практически возникновение устойчивого искрового разряда в месте повреждения обеспечивается при значении переходного сопротивления 40 Ом и более. При меньших значениях переходного сопротивления и металлических замыканиях на оболочку акустический метод не может быть применен. В этих случаях проводящий мостик в месте повреждения разрушают пропусканием больших разрядных токов.

В настоящее время для создания в месте повреждения кабеля искровых разрядов применяют генераторы акустических ударных волн. Генератор имеет конденсаторы, которые заряжаются и затем разряжаются в дефектный кабель через рабочий искровой промежуток.

Рисунок. Генератор акустических ударных волн

Место повреждения кабеля определяется по максимальной слышимости звука разрядов. Обычно зона слышимости на поверхности земли колеблется от 2 до 15 метров в зависимости от свойств грунта. Наибольшую зону слышимости обеспечивают плотные и однородные грунты, наименьшую зону – рыхлые грунты, шлак, строительный мусор.

В случае, если зона повреждения располагается на расстоянии 10-50 м от оживленной автострады, то поиск повреждения рекомендуется проводить в ночное время, т. к. шум машин не позволит выделить акустический сигнал.

Ниже на видео демонстрируются акустические разряды в кабелях.

Применение акустического метода наиболее целесообразно для кабелей проложенных в земле и под водой. При прокладке хотя бы части кабельной трассы в кабельных каналах и коллекторах не рекомендуется использовать акустический метод из-за опасности возникновения пожара. Последнее обусловлено тем, что протекающие в момент разряда большие импульсные токи вызывают в местах соприкосновения с заземленными конструкциями и с другими кабелями искрение, что может привести к загоранию краски, покрытия кабеля и т.д.

Дополнительный материал:

  1. Приемник для поиска повреждений в силовых кабелей ПОИСК 2006м. Руководство по эксплуатации.
  2. Приемник для поиска повреждений в силовых кабелей П-806. Руководство по эксплуатации.
  3. Генератор акустических ударных волн ГАУВ-6-05-1. Паспорт.