Как устроен катер на воздушной подушке. Любительские аппараты на воздушной подушке. Выделка воздушной камеры

Катера на воздушной подушке

Этот катер является скоростным судном, способным передвигаться над гладью воды и над любой ровной твердой поверхностью: болото, песок, снег. Идея судна на воздушной подушке появилась еще в XVIII веке. Но только в 1926 году русский ученый и изобретатель Циолковский разработал принцип передвижения на воздушной подушке. А через почти 10 лет инженером В. Левковым был сконструирован первый такой аппарат. К сожалению, проект был полностью уничтожен в годы Второй Мировой Войны. «Парящий аппарат», на основе, которого построены все современные суда, был создан британским изобретателем Кокереллом. Первый корабль модели SR-N1, построенный в 1959 году, пересек Английский канал всего за 20 минут. Сейчас катера используются в военных целях, в экспедициях по труднодоступным местам, в сложных климатических условиях, а также как развлекательный аттракцион для туристов.

Принцип действия воздушной подушки

Подушка образуется в результате аккумуляции сжатого воздуха под дном корабля. Он поднимает катер над водой и сушей. Благодаря подаваемому воздуху снижается сила трения. Это позволяет аппарату беспрепятственно двигаться над поверхностями.

Существует несколько видов воздушной подушки:

  1. Вид, при котором воздушные потоки, собирающийся за счет воздушного винта, свободно обволакивает дно вокруг корабля. Сильные потоки воздуха заставляют выше парить катер.
  2. Скеговые катера оснащены узкими корпусами – скегами. Они экономят воздух. Такое судно может плыть исключительно над водой.
  3. Катера с сопловым видом передвигаются за счет аккумуляции воздуха из специальных сопел. Подушка ограждается струями воды, образующимися в соплах.

Также подушки разделяются по способу образования:

  1. Статическое устройство образуется с помощью внешнего вентилятора;
  2. Динамическая воздушная подушка – продукт повышенного давления в днище, которое образуется при движении катера над поверхностью.

Технические возможности

Технические характеристики катера достаточно обширные. Такие лодки подойдут и для активного отдыха, и для исследовательских экспедиций, и для участия в военных действиях.

  1. Высокая скорость при небольшом расходе топлива. При крейсерской скорости около 60 км/час расход топлива 20 литров.
  2. Катер может передвигаться практически по любой поверхности: вода, песок, болото, снег и даже по траве и асфальту.
  3. Средняя грузоподъёмность пассажирского катера составляет 1-1,5 тонны.
  4. Катера могут функционировать в любое время года и в любых погодных условиях, даже во время ледохода.

Десантный катер “Кальмар”

При таких характеристиках все же катер имеет ограничения использования. Во-первых, это судно не может преодолевать твердые преграды свыше 35 сантиметров. Например, столкновение с корягой или бревном будет стоить судоходному аппарату понижением давления в днище или повреждением гибкого ограждения судна. Во-вторых, катер не выдерживает высоких волн. Это затрудняет движение и даже может его потопить. В-третьих, проходимость по густым и высоким зарослям также может вызвать трудности передвижения.

Катера-амфибии

Судна-амфибии – это компактные судна, передвигающиеся обычно за счет воздушных винтов. Они расположены сверху корпуса. Благодаря винтовым кольцевым насадкам снижается шум от их работы, и происходит увеличение тяговой силы. Чтобы судно передвигалось быстрее, корпус амфибии облегчен. Он создан из алюминия, а рубка управления стеклопластиковая. Силовая установка обычно дизельная или бензиновая и охлаждается воздухом. Легкий корпус с мощной силовой установкой делают катер быстроходным. Яркими представителями катеров-амфибий можно считать:

  • Нептун 3 с двигателем Rotax-582UL;
  • Пегас 4М – модель Rotax912;
  • Хивус-4 с силовой установкой ВАЗ-21213;
  • Кайман оснащен двигателем Subaru. Его мощность – 260 лошадиных сил;
  • Гепард, на котором установлен двигатель 3М3-53-11.

Катер “Гепард”

Развитие российских катеров

Развитие российских катеров можно условно разделить на несколько этапов. Первый этап начинается с 1937 по 1940 годы с проектирования катеров серии «Л» инженером Левковым. К сожалению, вес построенные и испытанные корабли не выдержали суровых боевых условий войны 1940-1945 года, и были уничтожены.

Важным этапом развития судов является конструкторская идея английского профессора Коккерела, который предложил в 1955 г. нагнетать воздух с помощью сопел. В дальнейшем основные сконструированные суда основывались на его изобретении.

Ведущее судостроительное бюро «Алмаз» стало главным местом развития советских катеров с воздушной подушкой. Первым серийным катером организации, который был создан в 1969 году, стал десантный штурмовик «Скат». Далее он стал основой для модификаций «Мурена» и «Омар». В следующие годы был создан десантный катер «Кальмар».

Десантный катер на воздушной подушке “Зубр”

В 1988 году был создан быстроходный самый большой катер в мире «Зубр» с грузоподъёмностью в 150 тонн.

Все технологии, применяемые в строительстве военных судов, были учтены и в гражданских катерах. Но в дальнейшем, проанализировав весь предыдущий опыт создания плавательных средств, конструкторы пришли к выводу, что проект убыточен. И было решено использовать более экономичные дизельные двигатели.

Представители гражданских судов

Катер «Барс» предназначен для поисково-спасательных работ и транспортировки пассажиров в труднодоступные места. Его длина составляет 6,8 метра, а ширина – 3,5 метра. Катер вмещает от 6 до 8 человек с водителем. Он развивает скорость до 80 км/час. Имеет один бензиновый двигатель модели М-14В26 мощностью 325 лошадиных сил.

Катер на воздушной подушке «Гепард» – это четырехместное алюминиевое судно. Используется спасателями, речной полицией, почтовыми службами. Силовая установка включает в себя автомобильный двигатель ЗМЗ-53-11 и два винта с кольцевой насадкой, что делает катер низкошумным. Развивает скорость до 60 км/час.

Представители военных судов

Десантные катера имеют военное назначение и призваны высаживать десант, военный груз, оружие в труднодоступных местах. Это могут быть болотистые или заснеженные местности, скрытые пляжи и бухты. Тактические суда могут наносить вооруженные удары и оказывать огневую поддержку другим судам.

Десантный катер проекта 1205 «Скат» – первый серийный проект конструкторского бюро «Алмаз». Судно рассчитано на перевозку 40 солдат. Длина корабля – 21,4 метра, ширина – 7,3 метра, а осадка – 50 сантиметров. На «Скате» установлено две газовые турбины ТВД-10М и одна ТДВ-10. Катер развивает скорость до 49 узлов. Дальность плавания составляет 200 миль. Экипаж корабля – 4 человека. Десантный катер вооружен четырьмя 30-мм гранатомета БП-30 «Пламя» и двумя 7,62-мм пулеметами Калашникова. Также на борту установлено радиолокационное оборудование «Кивач-1».

Катер на воздушной подушке “Зубр”

Десантный катер на воздушной подушке «Зубр» – пока самый крупный катер в своем роде. Он предназначен для выброса десанта, грузов, а также для перевозки и постановки мин и огневой поддержки других судов. Он способен передвигаться по земле и болоту, обходить рвы и минные заграждения. Длин судна составляет 57 метров, а ширина – 25,6 метра. Благодаря пяти газотурбинным двигателям общей мощностью 50 тысяч лошадиных сил, он достигает максимальной скорости до 60 узлов.

Вооружение составляет:

  1. Две пусковые установки А-22 «Огонь» с неуправляемыми ракетами
  2. Две 30-мм установки АК-630 и система управления огнем МР-123
  3. Восемь комплектов зенитно-ракетного комплекса «Игла».

Корпус катера обычно состоит из внешней и внутренней оболочек. Наружная оболочка – это наклоненные на 50 градусов борта без дна. Они плоские по ширине и немного выпуклые вверху. Нос катера скругленный. Есть открытые катера и катера с закрытой кабиной. Внутри кабины установлено рулевое оборудование и средства связи.

Десантные суда имеют более мощные газотурбинные двигатели различных моделей. Например, на «Кальмаре» установлена модель АЛ-20К, а на американском LCAC – Allied-Signal TF-40B. Малые катера пассажирского вида оснащены автомобильными дизельными или бензиновыми двигателями различных моделей. Это и ВАЗ-21213, и Subaru, и Rotax и ЗМЗ-53.

В катерах на воздушной подушке установлены на корпусе воздушные винты. Они в зависимости от размера судна бывают: 4, 6 и 9-лопастные с фиксированным шагом. Количество винтов варьируется от 1 до 4.

Мягкое ограждение или «юбка» достаточно эластичная. Это отдельные части, сшитые из плотной, но легкой ткани. Полотно имеет водоотталкивающие и водонепроницаемые свойства, не замерзает. Обычно используется прорезиненный капрон.

Противошумная защита судна обеспечивается:

  1. Амортизацией двигателей
  2. Наличием эластичных муфт
  3. Глушителями выхлопных газов
  4. Конструкция рубки имеет три слоя
  5. Использованием звукоизоляционного материала между салоном и отсеком топливного бака.

Материал корпуса бывает: алюминиевым и композитным. Военные катера на воздушных подушках изготовлены из прочных сплавов алюминия. Пассажирские катера на воздушной подушке изготавливаются из высокотехнологичных и прочных композитных материалов. Все крепежи и металлические элементы созданы их нержавеющей стали.

Обычно малые катера достаточно просто ремонтируются специалистами или экипажем. Мелкий ремонт есть возможность сделать самостоятельно. Для этого необходимо иметь на борту специальный ремонтный набор. Суда крупнее ремонтируются специально обученной бригадой судоремонтников.

Прототипом представляемой амфибийной машины стал аппарат на воздушной подушке (АВП) под названием «Аэроджип», публикация о котором была в журнале . Как и предшествующий аппарат, новая машина – одномоторная, одновинтовая с распределённым воздушным потоком. Эта модель тоже трёхместная, с расположением пилота и пассажиров по Т-образной схеме: пилот впереди посередине, а пассажиры – по бокам, сзади. Хотя ничто не мешает и четвёртому пассажиру расположиться за спиной водителя – длины сиденья и мощности винтомоторной установки вполне хватает.

Новая машина, кроме улучшенных технических характеристик, имеет ряд конструктивных особенностей и даже нововведений, повышающих её надёжность в эксплуатации и живучесть – всё-таки амфибия – «птица» водоплавающая. А «птицей» её называю потому, что и над водой, и над землёй передвигается она всё же по воздуху.

Конструктивно новая машина состоит из четырёх основных частей: стеклопластикового корпуса, пневмобаллона, гибкого ограждения (юбки) и винтомоторной установки.

Ведя рассказ о новой машине, неизбежно придётся повторяться – ведь конструкции во многом схожи.

Корпус амфибии идентичен прототипу как по размерам, так и по конструкции – стеклопластиковый, двойной, объёмный, состоит из внутренней и наружной оболочек. Здесь же стоит отметить, что отверстия во внутренней оболочке в новом аппарате расположены теперь не у верхней кромки бортов, а примерно посередине между ней и днищевой кромкой, что обеспечивает более быстрое и стабильное создание воздушной подушки. Сами отверстия теперь не продолговатые, а круглые, диаметром 90 мм. Их около 40 штук и расположены они равномерно по бортам и спереди.

Каждая оболочка выклеивалась в своей матрице (использованы от предыдущей конструкции) из двух-трёх слоёв стеклоткани (а днище – из четырёх слоёв) на полиэфирном связующем. Конечно, эти смолы уступают винил-эфирным и эпоксидным по адгезии, уровню фильтрации, усадке, а также выделению вредных веществ при высыхании, но имеют неоспоримое преимущество в цене – они значительно дешевле, что немаловажно. Для тех, кто намеревается использовать такие смолы, напомню, что помещение, где проводятся работы, должно иметь хорошую вентиляцию и температуру не менее +22°С.

1 – сегмент (комплект 60 шт.); 2 – баллон; 3 – швартовная утка (3 шт.); 4 – ветровой козырёк; 5 – поручень (2 шт.); 6 – сетчатое ограждение воздушного винта; 7 – наружная часть кольцевого канала; 8 – руль направления (2 шт.); 9 – рычаг управления рулями; 10 – лючок в тоннеле для доступа к топливному баку и аккумулятору; 11 – сиденье пилота; 12 – пассажирский диван; 13 – кожух двигателя; 14 – весло (2 шт.); 15 – глушитель; 16 – наполнитель (пенопласт); 17 – внутренняя часть кольцевого канала; 18 – фонарь ходового огня; 19 – воздушный винт; 20 – втулка воздушного винта; 21 – приводной зубчатый ремень; 22 – узел крепления баллона к корпусу; 23 – узел крепления сегмента к корпусу; 24 – двигатель на мотораме; 25 – внутренняя оболочка корпуса; 26 – наполнитель (пенопласт); 27 – наружная оболочка корпуса; 28 – разделительная панель нагнетаемого воздушного потока

Матрицы изготавливались заранее по мастер-модели из таких же стекломатов на той же полиэфирной смоле, только толщина их стенок была побольше и составляла 7 -8 мм (у оболочек корпуса – около 4 мм). Перед выкпейкой элементов с рабочей поверхности матрицы были тщательно убраны все шероховатости и задиры, и она трижды покрывалась разбавленным в скипидаре воском и полировалась. После этого на поверхность распылителем (или валиком) был нанесён тонкий слой (до 0,5 мм) гелькоута (цветного лака) красного цвета.

После его высыхания начался процесс выклейки оболочки по следующей технологии. Вначале с помощью валика восковая поверхность матрицы и одна сторона стекпомата (с более мелкими порами) промазываются смолой, и затем мат укладывается на матрицу и прикатывается до полного удаления воздуха из-под слоя (при необходимости можно сделать и небольшую прорезь в мате). Таким же образом укладываются и последующие слои стекломатов до требуемой толщины (3-4 мм), с установкой, где необходимо, закладных деталей (металлических и деревянных). Излишние лоскуты по краям обрезались при вы-клейке «по-мокрому».

а – внешняя оболочка;

б – внутренняя оболочка;

1 – лыжа(дерево);

2 – подмоторная плита (дерево)

После изготовления по отдельности наружной и внутренней оболочек они состыковывались, скреплялись струбцинами и саморезами, а затем склеивались по периметру полосками промазанного полиэфирной смолой того же стекломата шириной 40 -50 мм, из которого были изготовлены сами оболочки. После присоединения оболочек к кромке лепестковыми заклёпками прикреплялась по периметру вертикальная бортовая планка из 2-мм дюралюминиевой полосы шириной не менее 35 мм.

Дополнительно кусочками пропитанной смолой стеклоткани следует аккуратно проклеить все углы и места вворачивания крепёжных деталей. Наружная оболочка сверху покрыта гелькоутом – полиэфирной смолой с акриловыми добавками и воском, придающими блеск и водостойкость.

Стоит отметить, что по такой же технологии (по ней изготавливались наружная и внутренняя оболочки) выклеивались и более мелкие элементы: внутренняя и наружная оболочки диффузора, рули поворота, кожух двигателя, ветроотбойник, тоннель и сиденье водителя. Бензобак (промышленный из Италии) на 12,5 л вставляется внутрь корпуса, в консоль, перед скреплением нижней и верхней части корпусов.

внутренний оболочка корпуса с выпускными воздушными отверстиями для создания воздушной подушки; выше отверстий – ряд тросовых клипс для зацепления концов платка сегмента юбки; к днищу приклеены две деревянные лыжи

Тем, кто только начинает работать со стеклопластиком, рекомендую начинать изготовление катера именно с этих мелких элементов. Полная масса стеклопластикового корпуса вместе с лыжами и полосой из алюминиевого сплава, диффузором и рулями направления – от 80 до 95 кг.

Пространство между оболочками служит воздуховодом по периметру аппарата от кормы по обоим бортам к носу. Верхняя и нижняя части этого пространства заполнены строительным пенопластом, который обеспечивает оптимальное сечение воздушных каналов и дополнительную плавучесть (а соответственно и живучесть) аппарату. Куски пенопласта склеивались между собой всё тем же полиэфирным связующим, а к оболочкам приклеивались полосами стеклоткани, тоже пропитанной смолой. Далее из воздушных каналов воздух выходит наружу через равномерно расположенные отверстия диаметром 90 мм в наружной оболочке, «упирается» в сегменты юбки и создаёт под аппаратом воздушную подушку.

К днищу наружной оболочки корпуса для защиты от повреждений приклеены снаружи пара продольных лыж из деревянных брусков, а в кормовой части кокпита (то есть изнутри) – под-моторная деревянная плита.

Баллон . Новая модель катера на воздушной подушке имеет чуть ли не вдвое большее водоизмещение (350 – 370 кг), чем прежняя. Этого удалось добиться за счёт установки надувного баллона между корпусом и сегментами гибкого ограждения (юбкой). Баллон выклеен из плёночного на лавсановой основе ПХВ материала Уіпуріап финского производства плотностью 750 г/м 2 по форме корпуса в плане. Материал прошёл испытания на больших промышленных судах на воздушной подушке, таких как «Хиус», «Пегас», «Марс». Для повышения живучести баллон может состоять из нескольких отсеков (в данном случае – из трёх, каждый имеет свой клапан наполнения). Отсеки в свою очередь могут разделяться и вдоль пополам продольными перегородками (но такой их вариант исполнения пока ещё только в проекте). При такой конструкции пробитый отсек (или даже два) позволит продолжить движение по маршруту, а тем более добраться до берега для ремонта. Для экономного раскроя материала баллон разделён на четыре секции: носовая, две боркормовая. Каждая секция, в свою очередь, склеивается из двух частей (половинок) оболочки: нижней и верхней – их выкройки зеркально отображённые. В данном варианте баллона отсеки и секции не совпадают.

а – внешняя оболочка; б – внутренняя оболочка;
1 – носовая секция; 2 – бортовая секция (2 шт.); 3 – кормовая секция; 4 – перегородка (3 шт.); 5 – клапаны (3 шт.); 6 – ликтрос; 7 – фартук

По верху баллона приклеен «ликтрос» – полоса из сложенного вдвое материала Vinyplan 6545 «Арктик», с вложенным по сгибу плетёным капроновым шнуром, пропитанным клеем «900И». «Ликтрос» прикладывается к бортовой планке, и с помощью пластмассовых болтов баллон крепится к алюминиевой полосе, закреплённой на корпусе. Такая же полоса (только без вложенного шнура) приклеена к баллону и снизу-спереди («на полвосьмого»), так называемый «фартук» – к которому привязываются верхние части сегментов (язычки) гибкого ограждения. Позднее к передней части баллона был приклеен резиновый бампер-отбойник.


Мягкое эластичное ограждение
«Аэроджипа» (юбка) состоит из отдельных, но одинаковых элементов -сегментов, выкроенных и сшитых из плотной лёгкой ткани или плёночного материала. Желательно, чтобы ткань была водоотталкивающей, не твердела на морозе и не пропускала воздух.

Я использовал опять же материал Vinyplan 4126, только плотностью поменьше (240 г/м 2), но вполне подойдёт отечественная ткань типа перкаль.

Сегменты имеют несколько меньший размер, чем на «безбаллонной» модели. Выкройка сегмента несложная, и сшить его можно самому даже вручную, либо сварить токами высокой частоты (ТВС).

Сегменты привязываются язычком крышки к ликпазу баллона (два – одним концом, при этом узелки находятся внутри под юбкой) по всему периметру «Аэроамфибии». Два же нижних угла сегмента с помощью капроновых строительных хомутиков подвешиваются свободно к стальному тросику диаметром 2 – 2,5 мм, обхватывающим нижнюю часть внутренней оболочки корпуса. Всего в юбке размещается до 60 сегментов. Стальной трос диаметром 2,5 мм крепится к корпусу посредством клипс, которые в свою очередь притягиваются к внутренней оболочке лепестковыми заклёпками.

1 – платок (материал «Виниплан 4126»); 2 – язычок (материал «Виниплан 4126»); 3 – накладка (ткань «Арктик»)

Такое крепление сегментов юбки не намного превышает время замены вышедшего из строя элемента гибкого ограждения, по сравнению с предыдущей конструкцией, когда каждый крепился по отдельности. Но как показала практика, юбка оказывается работоспособной даже при выходе из строя до 10% сегментов и частой замены их и не требуется.

1 – наружная оболочка корпуса; 2 – внутренняя оболочка корпуса; 3- накладка (стеклопластик) 4 - планка (дюралюминий, полоса 30х2); 5 – шуруп-саморез; 6 – ликтрос баллона; 7 – пластмассовый болт; 8 – баллон; 9 – фартук баллона; 10 – сегмент; 11 – шнуровка; 12 – клипса; 13-хомут(пластмассовый); 14-трос d2,5; 15-вытяжнаязаклёпка; 16-люверс

Винтомоторная установка состоит из двигателя, шестилопастного воздушного винта (вентилятора) и трансмиссии.

Двигатель – РМЗ-500 (аналог «Ротакс 503») от снегохода «Тайга». Выпускается ОАО «Русская механика» по лицензии австрийской фирмы Rotax. Мотор двухтактный, с лепестковым впускным клапаном и принудительным воздушным охлаждением. Зарекомендовал себя как надёжный, достаточно мощный (около 50 л.с.) и не тяжёлый (около 37 кг), а главное -сравнительно недорогой агрегат. Топливо – бензин марки АИ-92 в смеси с маслом для двухтактных двигателей (например, отечественное МГД-14М). Средний расход топлива – 9 – 10 л/ч. Смонтирован двигатель в кормовой части аппарата, на мотораме, прикреплённой к днищу корпуса (а точнее -к подмоторной деревянной плите). Моторама стала выше. Это сделано для удобства очистки кормовой части кокпита от снега и льда, которые попадают туда через борта и скапливаются там, и замерзают при остановке.

1 – выходной вал двигателя; 2 – ведущий зубчатый шкив (32 зуба); 3 – зубчатый ремень; 4 – ведомый зубчатый шкив; 5 – гайка М20 крепления оси; 6 – дистанционные втулки (3 шт.); 7 – подшипник (2 шт.); 8 – ось; 9 – втулка винта; 10 – задняя подкосная опора; 11 – передняя надмоторная опора; 12 - передняя подкосная опора-двунога (на чертеже не показана, см. фото); 13 – наружная щёчка; 14 – внутренняя щёчка

Воздушный винт – шестилопастный, фиксированного шага, диаметром 900 мм. (Была попытка установить два пятилопастных соосных винта, но она оказалась неудачной). Втулка винта -дюралюминиевая, литая. Лопасти – стеклопластиковые, с напылением гелькоутом. Ось втулки винта была удлинена, хотя на ней остались прежние подшипники 6304. Смонтирована ось на стойке над двигателем и закреплена здесь двумя распорками: двухлучевой – спереди и трёхлучевой – сзади. Перед винтом расположена сетчатая решётка ограждения, а сзади – перья воздушного руля.

Передача крутящего момента (вращения) с выходного вала двигателя на втулку воздушного винта осуществляется через зубчатый ремень с передаточным отношением 1:2,25 (ведущий шкив имеет 32 зуба, а ведомый – 72).

Воздушный поток от винта распределён перегородкой в кольцевом канале на две неравные части (примерно 1:3). Меньшая его часть идёт под днище корпуса на создание воздушной подушки, а большая – на образование пропульсивной силы (тяги) для передвижения. Несколько слов об особенностях вождения амфибии, конкретно – о начале движения. При работе двигателя на холостом ходу аппарат остаётся неподвижным. При увеличении числа его оборотов, амфибия сначала приподнимается над опорной поверхностью, а затем начинает движение вперёд при оборотах от 3200 – 3500 в минуту. В этот момент важно, особенно при трогании с грунта, чтобы пилот сначала приподнял заднюю часть аппарата: тогда кормовые сегменты ни за что не зацепятся, а передние проскользят по неровностям и препятствиям.

1 – основание (стальной лист s6, 2 шт.); 2 – портальная стойка (стальной лист s4,2 шт.); 3 – перемычка (стальной лист s10, 2 шт.)

Управление «Аэроджипом» (изменение направления движения) осуществляется аэродинамическими рулями направления, закреплёнными шарнирно за кольцевым каналом. Отклонение руля производится посредством двухплечего рычага (руля мотоциклетного типа) через итальянский боуденовский трос, идущий к одной из плоскостей аэродинамического руля. Другая плоскость соединена с первой жёсткой тягой. На левой рукоятке рычага закреплена манетка управления дроссельной заслонкой карбюратора или «курок» от снегохода «Тайга».

1 – руль; 2 – боуденовский трос; 3 – узел крепления оплётки к корпусу (2 шт.); 4 – боуденовская оплётка троса; 5 – рулевая панель; 6 – рычаг; 7 – тяга (качалка условно не показана); 8 – подшипник (4 шт.)

Торможение осуществляется «сбросом газа». При этом пропадает воздушная подушка и аппарат корпусом ложится на воду (или лыжами – на снег или грунт) и останавливается за счёт трения.

Электрооборудование и приборы . Аппарат снабжён аккумуляторной батареей, тахометром со счётчиком моточасов, вольтметром, индикатором температуры головки двигателя, галогенными фарами, кнопкой и чекой выключения зажигания на руле и др. Двигатель запускается электростартёром. Возможна установка любых других приборов.

Амфибийный катер получил название «Рыбак-360». Он прошёл ходовые испытания на Волге: в 2010 г. на слёте компании «Велход» в посёлке Эммаус под Тверью, в Нижнем Новгороде. Участвовал по просьбе Москомспорта в показательных выступлениях на празднике, посвящённом дню ВМФ в Москве на Гребном канале.

Технические данные «Аэроамфибии»:

Габаритные размеры, мм:
длина……………………………………………………………………..3950
ширина…………………………………………………………………..2400
высота…………………………………………………………………….1380
Мощность двигателя, л.с……………………………………………….52
Масса, кг…………………………………………………………………….150
Грузоподъёмность, кг………………………………………………….370
Запас топлива, л…………………………………………………………….12
Расход топлива, л/ч………………………………………………..9 - 10
Преодолеваемые препятствия:
подъём, град……………………………………………………………….20
волна, м……………………………………………………………………0,5
Крейсерская скорость, км/ч:
по воде……………………………………………………………………….50
по грунту……………………………………………………………………54
по льду……………………………………………………………………….60

М. ЯГУБОВ Почётный изобретатель г. Москвы

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Окончательной конструкцией, как и неформальным названием нашей поделки, мы обязаны коллеге из газеты «Ведомости». Увидев один из испытательных «взлетов» на парковке издательства, она воскликнула: «Да это же ступа Бабы-яги!» Такое сравнение нас несказанно обрадовало: ведь мы как раз искали способ оснастить наш катер на воздушной подушке рулем и тормозом, и способ нашелся сам собой — мы дали в руки пилоту метлу!

На вид это одна из самых глупых поделок, которые мы когда-либо создавали. Но, если вдуматься, она представляет собой весьма зрелищный физический эксперимент: оказывается, слабенький воздушный поток от ручной воздуходувки, предназначенной для сметания невесомых жухлых листьев с дорожек, способен вознести над землей человека и с легкостью перемещать его в пространстве. Несмотря на весьма внушительный вид, построить такой катер проще простого: при четком соблюдении инструкций это потребует всего пару часов непыльной работы.

С помощью веревки и маркера начертите на фанерном листе круг диаметром 120 см и выпилите днище лобзиком. Сразу же изготовьте второй такой же круг.


Совместите два круга и просверлите в них насквозь 100-миллиметровое отверстие с помощью коронки. Сохраните деревянные диски, извлеченные из коронки, один из них послужит центральной «пуговицей» воздушной подушки.


Расстелите душевую шторку на столе, положите сверху днище и закрепите полиэтилен мебельным степлером. Излишек полиэтилена обрежьте, отступив пару сантиметров от скоб.


Проклейте край юбки армированным скотчем в два ряда с 50-процентным перекрытием. Это сделает юбку герметичной и позволит избежать потерь воздуха.


Разметьте центральную часть юбки: в середине будет располагаться «пуговица», а вокруг нее шесть отверстий диаметром 5 см. Вырежьте отверстия макетным ножом.


Тщательно проклейте центральную часть юбки, включая отверстия, армированным скотчем. Накладывайте ленты с 50-процентным перекрытием, наклейте два слоя скотча. Повторно прорежьте отверстия макетным ножом и прикрутите центральную «пуговицу» саморезами. Юбка готова.


Переверните днище и прикрутите к нему второй фанерный круг. 12-миллиметровая фанера удобна в обработке, но она недостаточно жесткая, чтобы выдержать требуемые нагрузки без деформации. Два слоя такой фанеры придутся в самый раз. Наденьте по краям круга теплоизоляцию для сантехнических труб и закрепите ее степлером. Она послужит декоративным бампером.


Используйте манжеты и уголки для 100-миллиметровых вентиляционных воздуховодов, чтобы подключить воздуходувку к юбке. Закрепите двигатель с помощью уголков и стяжек.


Заведите двигатель и испытайте катер, стоя на коленях. Контролируя балансировку судна, установите на платформу кресло и закрепите его саморезами.

Вертолет и шайба

Вопреки распространенному заблуждению, катер опирается вовсе не на 10-сантиметровый слой сжатого воздуха, иначе это был бы уже вертолет. Воздушная подушка представляет собой что-то вроде надувного матраса. Полиэтиленовая пленка, которой затянуто днище аппарата, заполняется воздухом, растягивается и превращается в подобие надувного круга.

Пленка очень плотно прилегает к поверхности дороги, образуя широкое пятно контакта (практически по всей площади днища) с отверстием в центре. Из этого отверстия поступает воздух под давлением. По всей площади контакта между пленкой и дорогой образуется тончайший слой воздуха, по которому аппарат легко скользит в любом направлении. Благодаря надувной юбке даже небольшого количества воздуха достаточно для хорошего скольжения, так наша ступа гораздо больше похожа на шайбу в аэрохоккее, чем на вертолет.


Ветер под юбкой

Обычно мы не печатаем в рубрике «мастер-класс» точных чертежей и настоятельно рекомендуем читателям подключать к процессу творческое воображение, как можно больше экспериментируя с конструкцией. Но это не тот случай. Несколько попыток слегка отступить от популярного рецепта стоили редакции пары дней лишней работы. Не повторяйте наших ошибок — четко следуйте инструкции.

Катер должен быть круглым, как летающая тарелка. Судну, опирающемуся на тончайшую прослойку воздуха, необходим идеальный баланс: при малейшем дефекте развесовки весь воздух будет выходить с недогруженной стороны, а более тяжелый борт всем весом ляжет на землю. Симметричная круглая форма днища поможет пилоту легко находить баланс, слегка изменяя положение тела.


Для изготовления днища возьмите 12-миллиметровую фанеру, с помощью веревки и маркера начертите круг диаметром 120 см и выпилите деталь электрическим лобзиком. Юбка делается из полиэтиленовой душевой шторки. Выбор шторки — пожалуй, самый ответственный этап, на котором решается судьба будущей поделки. Полиэтилен должен быть как можно более толстым, но строго однородным и ни в коем случае не армированным тканью или декоративными лентами. Клеенка, брезент и прочие воздухонепроницаемые ткани не подходят для постройки судна на воздушной подушке.

В погоне за прочностью юбки мы совершили нашу первую ошибку: плохо тянущаяся клеенчатая скатерть не смогла плотно прижаться к дороге и сформировать широкое пятно контакта. Площади небольшого «пятнышка» не хватило, чтобы заставить тяжелую машину скользить.

Оставлять припуск, чтобы впустить под плотную юбку больше воздуха, — не выход. При надувании такая подушка образует складки, которые будут выпускать воздух и препятствовать образованию равномерной пленки. А вот плотно прижатый к днищу полиэтилен, растягиваясь при нагнетании воздуха, образует идеально гладкий пузырь, плотно облегающий любые неровности дороги.


Скотч — всему голова

Изготовить юбку несложно. Надо расстелить полиэтилен на верстаке, накрыть сверху круглой фанерной заготовкой с предварительно просверленным отверстием для подачи воздуха и тщательно закрепить юбку мебельным степлером. С задачей справится даже самый простой механический (не электрический) степлер с 8-миллиметровыми скобами.

Армированный скотч — очень важный элемент юбки. Он укрепляет ее там, где необходимо, сохраняя эластичность остальных участков. Обратите особое внимание на усиление полиэтилена под центральной «пуговицей» и в области отверстий для подачи воздуха. Скотч накладывайте с 50%-ным перекрытием и в два слоя. Полиэтилен должен быть чистым, иначе скотч может отклеиться.

Недостаточное усиление в центральной части стало причиной забавной аварии. Юбка порвалась в районе «пуговицы», и наша подушка превратилась из «бублика» в полукруглый пузырь. Пилот с округлившимися от удивления глазами вознесся на добрые полметра над землей и спустя пару мгновений рухнул вниз — юбка окончательно лопнула и выпустила весь воздух. Именно этот инцидент привел нас к ошибочной мысли использовать вместо душевой шторки клеенку.


Еще одно заблуждение, постигшее нас в процессе строительства катера, заключалось в уверенности, что мощности много не бывает. Мы раздобыли большую ранцевую воздуходувку Hitachi RB65EF с объемом двигателя 65 см 3 . У этой зверь-машины есть одно веское преимущество: она комплектуется гофрированным шлангом, с помощью которого очень легко подключить вентилятор к юбке. А вот мощность 2,9 кВт — явный перебор. Полиэтиленовой юбке нужно давать ровно такой объем воздуха, которого будет достаточно для подъема машины на 5−10 см над землей. Если переборщить с газом, полиэтилен не выдержит давления и порвется. Именно так и случилось с нашей первой машиной. Так что будьте уверены: если в вашем распоряжении есть хоть какая-нибудь воздуходувка, она подойдет для проекта.

Полный вперед!

Обычно у судов на воздушной подушке есть как минимум два винта: один маршевый, сообщающий машине поступательное движение вперед, и один вентилятор, нагнетающий воздух под юбку. Как же наша «летающая тарелка» будет двигаться вперед, и сможем ли мы обойтись одной воздуходувкой?

Этот вопрос мучил нас ровно до первых успешных испытаний. Оказалось, юбка так хорошо скользит по поверхности, что даже малейшего изменения баланса достаточно, чтобы аппарат сам собой поехал в ту или иную сторону. По этой причине устанавливать на машину кресло нужно только на ходу, чтобы правильно сбалансировать машину, и лишь затем привинтить ножки к днищу.


Мы попробовали вторую воздуходувку в качестве маршевого двигателя, но результат не впечатлил: узкое сопло дает быстрый поток, но объема проходящего через него воздуха недостаточно, чтобы создать мало-мальски заметную реактивную тягу. Что вам действительно понадобится при движении, так это тормоз. Вот на эту роль идеально подходит метла Бабы-яги.

Назвался судном — полезай в воду

К сожалению, наша редакция, а вместе с ней и мастерская располагаются в каменных джунглях, вдали даже от самых скромных водоемов. Поэтому мы не смогли спустить наш аппарат на воду. А ведь теоретически все должно работать! Если постройка катера станет для вас дачным развлечением в жаркий летний день, испытайте его на мореходность и поделитесь с нами рассказом о своих успехах. Разумеется, выводить катер на воду нужно с пологого берега на крейсерском дросселе, с полностью надутой юбкой. Допустить потопление никак нельзя — погружение в воду означает неминуемую гибель воздуходувки от гидроудара.

Высокие скоростные характеристики и амфибийные возможности аппаратов, передвигающихся на воздушной подушке (АВП), а также сравнительная простота их конструкций привлекают внимание конструкторов-любителей. В последние годы появилось немало небольших АВП, построенных самостоятельно и используемых для спорта, туризма или хозяйственных разъездов.

В некоторых странах, например в Великобритании, США и Канаде, налажено серийное промышленное производство малых АВП; предлагаются готовые аппараты либо наборы деталей для самостоятельной сборки.

Типичный спортивный АВП компактен, прост по конструкции, имеет независимые друг от друга системы подъема и движения, легко передвигается как над землей, так и над водой. Это преимущественно одноместные аппараты с карбюраторными мотоциклетными или легкими автомобильными двигателями воздушного охлаждения.

Туристские АВП более сложны по конструкции. Обычно они двух- или четырехместные, предназначены для сравнительно длительных путешествий и соответственно имеют багажники, топливные баки большой емкости, приспособления для защиты пассажиров от непогоды.


Для хозяйственных целей используются небольшие платформы, приспособленные для транспортировки преимущественно сельскохозяйственных грузов по пересеченной и болотистой местности.

Основные характеристики

Любительские АВП характеризуются главными размерениями, массой, диаметром нагнетателя и воздушного винта, расстоянием от центра массы АВП до центра его аэродинамического сопротивления.

В табл. 1 сопоставляются важнейшие технические данные наиболее популярных английских любительских АВП. Таблица позволяет ориентироваться в широком диапазоне значений отдельных параметров и использовать их для сравнительного анализа с собственными проектами.


Самые легкие АВП имеют массу около 100 кг, самые тяжелые - более 1000 кг. Естественно, чем меньше масса аппарата, тем меньшая требуется мощность двигателя для его движения или тем более высокие эксплуатационные качества могут быть достигнуты при той же потребляемой мощности.

Ниже приводятся наиболее характерные данные о массе отдельных узлов, составляющих общую массу любительского АВП: карбюраторный двигатель с воздушным охлаждением - 20-70 кг; осевой нагнетатель. (насос) - 15 кг, центробежный насос - 20 кг; воздушный винт - 6-8 кг; рама мотора - 5-8 кг; трансмиссия - 5-8 кг; кольцо-насадка воздушного винта - 3-5 кг; органы управления - 5-7 кг; корпус - 50-80 кг; топливные баки и бензопроводы - 5-8 кг; сиденье - 5 кг.

Общая грузоподъемность определяется расчетом в зависимости от числа пассажиров, заданного количества перевозимого груза, запасов топлива и масла, необходимых для обеспечения требуемой дальности плавания.

Параллельно с расчетом массы АВП требуется точный расчет положения центра тяжести, поскольку от этого зависят ходовые качества, остойчивость и управляемость аппарата. Главным условием является то, чтобы равнодействующая сил поддержания воздушной подушки проходила через общий центр тяжести (ЦТ) аппарата. При этом необходимо учитывать, что все массы, изменяющие свою величину в процессе эксплуатации (такие, например, как горючее, пассажиры, грузы), должны быть размещены вблизи от ЦТ аппарата, чтобы не вызывать его перемещения.

Центр тяжести аппарата определяется расчетом по чертежу боковой проекции аппарата, где наносят центры тяжести отдельных агрегатов, узлов конструкции пассажиров и грузов (рис. 1). Зная массы G i и координаты (относительно осей координат) x i и y i их центров тяжести, можно определить положение ЦТ всего аппарата по формулам:


Проектируемый любительский АВП должен соответствовать определенным эксплуатационным, конструктивным и технологическим требованиям. Основой для создания проекта и конструкции нового типа АВП являются, прежде всего, исходные данные и технические условия, которые определяют тип аппарата, его назначение, полную массу, грузоподъемность, габариты, тип главной энергетической установки, ходовые характеристики и специфические особенности.

От туристских и спортивных АВП, как, впрочем, и от других типов любительских АВП, требуется простота изготовления, использование в конструкции легкодоступных материалов и агрегатов, а также полная безопасность эксплуатации.

Говоря о ходовых характеристиках, подразумевают высоту парения АВП и связанную с этим качеством способность преодоления препятствий, максимальную скорость и приемистость, а также длину тормозного пути, остойчивость, управляемость, дальность хода.

В конструкции АВП принципиальную роль играет форма корпуса (рис. 2), которая является компромиссом между:

  • а) круглыми в плане обводами, которые характеризуются наилучшими параметрами воздушной подушки в момент зависания на месте;
  • б) каплевидной формой обводов, которая предпочтительнее с точки зрения снижения аэродинамического сопротивления при движении;
  • в) заостренной в носу ("клювообразной") формой корпуса, оптимальной с гидродинамической точки зрения во время движения по взволнованной поверхности воды;
  • г) формой, оптимальной для эксплуатационных целей.
Соотношения между длиной и шириной корпусов любительских АВП варьируются в пределах L:В=1,5÷2,0.

Используя статистические данные по существующим конструкциям, которые соответствуют вновь создаваемому типу АВП, конструктор должен установить:

  • массу аппарата G, кг;
  • площадь воздушной подушки S, м 2 ;
  • длину, ширину и очертания корпуса в плане;
  • мощность двигателя подъемной системы N в.п. , кВт;
  • мощность тягового двигателя N дв, КВТ.
Эти данные позволяют вычислить удельные показатели:
  • давление в воздушной подушке P в.п. = G:S;
  • удельную мощность подъемной системы q в.п. = G:N в.п. .
  • удельную мощность тягового двигателя q дв = G:N дв, а также начать разработку конфигурации АВП.

Принцип создания воздушной подушки, нагнетатели

Наиболее часто при постройке любительских АВП используются две схемы образования воздушной подушки: камерная и сопловая.

В камерной схеме, используемой чаще всего в простых конструкциях, объемный расход воздуха, проходящего через воздушный тракт аппарата, равен объемному расходу воздуха нагнетателя


где:
F - площадь периметра зазора между опорной поверхностью и нижней кромкой корпуса аппарата, через который воздух выходит из-под аппарата, м 2 ; ее можно определить как произведение периметра ограждения воздушной подушки Р на величину зазора h e между ограждением и опорной поверхностью; обычно h 2 = 0,7÷0,8h, где h - высота парения аппарата, м;

υ - скорость истечения воздуха из-под аппарата; с достаточной точностью ее можно рассчитать по формуле:


где Р в.п. - давление в воздушной подушке, Па; g - ускорение свободного падения, м/с 2 ; у - плотность воздуха, кг/м 3 .

Мощность, необходимая для создания воздушной подушки в камерной схеме, определяется по приближенной формуле:


где Р в.п. - давление за нагнетателем (в ресивере), Па; η н - коэффициент полезного действия нагнетателя.

Давление в воздушной подушке и расход воздуха - основные параметры воздушной подушки. Их величины зависят прежде всего от размеров аппарата, т. е. от массы и несущей поверхности, от высоты парения, скорости движения, способа создания воздушной подушки и сопротивления в воздушном тракте.

Наиболее экономичные аппараты на воздушной подушке - это АВП больших размеров или больших несущих поверхностей, при которых минимальное давление в подушке позволяет получить достаточно большую грузоподъемность. Однако самостоятельная постройка аппарата больших размеров связана с трудностями транспортировки и хранения, а также ограничивается финансовыми возможностями конструктора-любителя. При уменьшении размеров АВП требуется значительное повышение давления в воздушной подушке и, соответственно, увеличение потребляемой мощности.

От давления в воздушной подушке и скорости истечения воздуха из-под аппарата зависят, в свою очередь, негативные явления: забрызгивание во время движения над водой и запыление - при движении над песчаной поверхностью либо сыпучим снегом.

По-видимому, удачная конструкция АВП является в известном смысле компромиссом между описанными выше противоречивыми зависимостями.

Чтобы снизить затраты мощности на прохождение воздуха через воздушный канал от нагнетателя в полость подушки, он должен обладать минимальным аэродинамическим сопротивлением (рис. 3). Потерн мощности, неизбежные при прохождении воздуха по каналам воздушного тракта, бывают двоякого рода: потерн на движение воздуха в прямых каналах постоянного сечения и местные потери - при расширении и изгибах каналов.

В воздушном тракте небольших любительских АВП потери на движение воздушных потоков вдоль прямых каналов постоянного сечения относительно невелики вследствие незначительной протяженности этих каналов, а также тщательности обработки их поверхности. Эти потери можно оценить по формуле:


где: λ - коэффициент потерь давления на длину канала, рассчитанный по графику, представленному на рис. 4, в зависимости от числа Рейнольдса Re=(υ·d):v, υ - скорость прохождения воздуха в канале, м/с; l - длина канала, м; d - диаметр канала, м (если канал имеет отличное от круглого сечение, то d - диаметр эквивалентного по площади поперечного сечения цилиндрического канала); v - коэффициент кинематической вязкости воздуха, м 2 /с.

Местные потери мощности, связанные с сильным увеличением либо уменьшением сечения каналов и значительными изменениями направления потока воздуха, а также потери на всасывание воздуха в нагнетатель, сопла и к рулям составляют основные затраты мощности нагнетателя.


Здесь ζ м - коэффициент местных потерь, зависящий от числа Рейнольдса, которое определяется геометрическими параметрами источника потерь и скоростью прохождения воздуха (рис. 5-8).

Нагнетатель в АВП должен создавать определенное давление воздуха в воздушной подушке с учетом затрат мощности на преодоление сопротивления каналов воздушному потоку. В некоторых случаях часть воздушного потока используется и для образования горизонтальной тяги аппарата с целью обеспечения движения.

Полное давление, создаваемое нагнетателем, складывается из статического и динамического давлений:


В зависимости от типа АВП, площади воздушной подушки, высоты подъема аппарата и величины потерь составляющие компоненты p sυ и p dυ варьируются. Это определяет выбор типа и производительность нагнетателей.

В камерной схеме воздушной подушки статическое давление p sυ , необходимое для создания подъемной силы, можно приравнять к статическому давлению за нагнетателем, мощность которого определяется по формуле, приведенной выше.

При расчете потребной мощности нагнетателя АВП с гибким ограждением воздушной подушки (сопловая схема) статическое давление за нагнетателем можно рассчитать по приближенной формуле:


где: Р в.п. - давление в воздушной подушке под днищем аппарата, кг/м 2 ; kp - коэффициент перепада давления между воздушной подушкой и каналами (ресивером), равный k p =Р р:Р в.п. (Р р - давление в воздушных каналах за нагнетателем). Величина k p колеблется в пределах 1,25÷1,5.

Объемный расход воздуха нагнетателя можно рассчитать по формуле:


Регулировка производительности (расхода) нагнетателей АВП осуществляется чаще всего - путем изменения частоты вращения либо (реже) путем дросселирования потока воздуха в каналах при помощи находящихся в них поворотных заслонок.

После того как рассчитана необходимая мощность нагнетателя, необходимо найти для него двигатель; чаще всего любители используют мотоциклетные двигатели, если требуется мощность до 22 кВт. При этом в качестве расчетной мощности принимается 0,7-0,8 максимальной мощности двигателя, указываемой в паспорте мотоцикла. Необходимо предусмотреть интенсивное охлаждение двигателя и тщательную очистку воздуха, поступающего через карбюратор. Важно также получить установку с минимальной массой, которая складывается из массы двигателя, передачи между нагнетателем и двигателем, а также массы самого нагнетателя.

В зависимости от типа АВП применяются двигатели с рабочим объемом от 50 до 750 см 3 .

В любительских АВП применяются в равной степени как осевые нагнетатели, так и центробежные. Осевые нагнетатели предназначаются для небольших я несложных конструкций, центробежные - для АВП со значительным давлением в воздушной подушке.

Осевые нагнетатели, как правило, имеют четыре лопасти или больше (рис. 9). Их обычно изготовляют из дерева (четырехлопастные) или металла (нагнетатели с большим количеством лопастей). Если они из алюминиевых сплавов, то роторы можно отлить, а также применить сварку; можно сделать их сварной конструкции из стального листа. Диапазон давления, создаваемого осевыми четырехлопастными нагнетателями, составляет 600-800 Па (около 1000 Па с большим числом лопастей); КПД этих нагнетателей достигает 90%.

Центробежные нагнетатели делают сварной конструкции из металла или формуют из стеклопластика. Лопасти изготовляют гнутыми из тонкого листа либо с профилированным поперечным сечением. Центробежные нагнетатели создают давление до 3000 Па, а КПД их достигает 83%.

Выбор тягового комплекса

Движители, создающие горизонтальную тягу, можно разделить в основном на три типа: воздушный, водяной и колесный (рис. 10).

Под воздушным движителем понимается воздушный винт авиационного типа в кольце-насадке или без него, осевой или центробежный нагнетатель, а также воздушно-реактивный движитель. В простейших конструкциях горизонтальную тягу иногда можно создать с помощью наклона АВП и использования появляющейся при этом горизонтальной составляющей силы воздушного потока, истекающего из воздушной подушки. Воздушный движитель удобен для амфибийных аппаратов, не имеющих контакта с опорной поверхностью.

Если речь идет об АВП, передвигающихся только над поверхностью воды, то можно применить гребной винт или водометный движитель. По сравнению с воздушными эти движители позволяют получить значительно большую тягу на каждый киловатт затраченной мощности.

Ориентировочное значение тяги, развиваемой различными движителями, можно оценить по данным, приведенным на рис. 11.

При выборе элементов воздушного винта следует учитывать все виды сопротивления, возникающие в процессе движения АВП. Аэродинамическое сопротивление рассчитывается по формуле


Сопротивление воды, обусловленное образованием волн при движении АВП по воде, можно вычислить по формуле


где:

V - скорость движения АВП, м/с; G - масса АВП, кг; L - длина воздушной подушки, м; ρ - плотность воды, кг·с 2 /м 4 (при температуре морской воды +4°С равна 104, речной - 102);

С х - коэффициент аэродинамического сопротивления, зависящий от формы аппарата; определяется продувкой моделей АВП в аэродинамических трубах. Приближенно можно принять C x =0,3÷0,5;

S - площадь поперечного сечения АВП - его проекции на плоскость, перпендикулярную направлению движения, м 2 ;

Е - коэффициент волнового сопротивления, зависящий от скорости АВП (числа Фруда Fr=V:√ g·L) и соотношения размерений воздушной подушки L:B (рис. 12).

В качестве примера в табл. 2 приведен расчет сопротивления в зависимости от скорости движения для аппарата длиной L=2,83 м и В=1,41 м.


Зная сопротивление движению аппарата, можно вычислить мощность двигателя, необходимую для обеспечения его движения с заданной скоростью (в данном примере 120 км/ч), принимая КПД воздушного винта η р равным 0,6, а КПД передачи от двигателя на винт η п =0,9:
В качестве воздушного движителя для любительских АВП чаще всего применяется двухлопастной винт (рис. 13) .

Заготовка для такого винта может быть склеена из фанерных, ясеневых или сосновых пластин. Кромка, а также концы лопастей, которые подвергаются механическому воздействию твердых частиц или песка, всасываемых вместе с потоком воздуха, защищаются оковкой из листовой латуни.

Используются также и четырехлопастные винты. Количество лопастей зависит от условий эксплуатации и назначения винта - для развития.большой скорости или создания значительной силы тяги в момент старта. Достаточную силу тяги может обеспечить и двухлопастной винт с широкими лопастями. Сила тяги, как правило, повышается, если воздушный винт работает в профилированном кольце-насадке.

Готовый винт перед креплением на валу двигателя должен быть отбалансирован, главным образом - статически. В противном случае при его вращении возникают вибрации, которые могут привести к повреждению всего аппарата. Балансировка с точностью до 1 г для любителей вполне достаточна. Кроме балансировки винта проверяют его биение относительно оси вращения.

Общая компоновка

Одной из основных задач конструктора является соединение всех агрегатов в одно функциональное целое. Проектируя аппарат, конструктор обязан в пределах корпуса предусмотреть место для экипажа, размещения агрегатов подъемной и движительной систем. Важно при этом использовать в качестве прототипа конструкции уже известных АВП. На рис. 14 и 15 представлены конструктивные схемы двух типовых АВП любительской постройки.

В большинстве АВП корпус представляет собой несущий элемент, единую конструкцию. На нем находятся агрегаты главной энергетической установки, воздушные каналы, приборы управления и кабина водителя. Кабины водителей размешаются в носовой или центральной части аппарата в зависимости от того, где находится нагнетатель - за кабиной или перед нею. Если АВП - многоместный, кабина находится обычно в средней части аппарата, что позволяет эксплуатировать его с разным количеством людей на борту без изменения центровки.

В небольших любительских АВП место водителя чаще всего открытое, защищенное спереди ветровым стеклом. В аппаратах более сложной конструкции (туристского типа) кабины закрыты куполом из прозрачного пластика. Для размещения необходимого снаряжения и запасов используются объемы, имеющиеся по бортам кабины и под креслами.

При воздушных двигателях управление АВП осуществляется с помощью либо рулей, размещенных в потоке воздуха за винтом, либо направляющих устройств, укрепленных в потоке воздуха, истекающего из воздушно-реактивного движителя. Управление аппаратом с места водителя может быть авиационного типа - с помощью рукояток или рычагов руля управления, либо как в автомобиле - рулевым колесом и педалями.

В любительских АВП применяются два основных вида топливных систем; с подачей топлива самотеком и с бензонасосом автомобильного или авиационного типа. Детали топливной системы, такие, как клапаны, фильтры, масляная система вместе с бачками (если применяется четырехтактный двигатель), маслорадиаторы, фильтры, система водяного охлаждения (если это двигатель с водяным охлаждением), - подбираются обычно из существующих авиационных или автомобильных детален.

Выхлопные газы от двигателя всегда выводятся в кормовую часть аппарата и никогда - в подушку. Чтобы уменьшить шум, возникающий при эксплуатации АВП, особенно вблизи населенных пунктов, используются глушители автомобильного типа.

В простейших конструкциях нижняя часть корпуса служит в качестве шасси. Роль шасси могут выполнять деревянные полозья (или полоз), принимающие на себя нагрузку при соприкосновении с поверхностью. В туристских АВП, отличающихся большей массой, чем спортивные, монтируются колесные шасси, которые облегчают перемещение АВП во время стоянок. Обычно используются два колеса, установленных по бортам либо вдоль продольной оси АВП. Колеса имеют контакт с поверхностью лишь после прекращения работы подъемной системы, когда АВП касается поверхности.

Материалы и технология изготовления

Для изготовления АВП деревянной конструкции применяют высококачественные сосновые пиломатериалы, подобные используемым в авиастроении, а также березовую фанеру, ясеневую, буковую и липовую древесину. Для склеивания дерева применяют водостойкий клей с высокими физико-механическими качествами.

Для гибких ограждений преимущественно используют технические ткани; они должны быть исключительно прочными, устойчивыми к атмосферному влиянию и влажности, а также к трению, В Польше чаще всего используют огнестойкую ткань, покрытую пластиковидным полихлорвинилом.

Важно выполнить правильно раскрой и, обеспечить тщательное соединение полотнищ между собой, а также крепление их к аппарату. Для крепления оболочки гибкого ограждения к корпусу применяют металлические планки, которые посредством болтов равномерно прижимают ткань к корпусу аппарата.

Конструируя форму гибкого ограждения воздушной подушки, не следует забывать о законе Паскаля, который гласит: давление воздуха распространяется во всех направлениях с одинаковой силой. Поэтому оболочка гибкого ограждения в надутом состоянии должна иметь форму цилиндра или сферы либо их сочетания.

Конструкция и прочность корпуса

На корпус АВП передаются силы от груза, перевозимого аппаратом, вес механизмов силовой установки и т. д., а также действуют нагрузки от внешних сил, ударов днища о волну и от давления в воздушной подушке. Несущая конструкция корпуса любительского АВП чаще всего представляет собой плоский понтон, который поддерживается давлением в воздушной подушке, а в режиме плавания обеспечивает плавучесть корпуса. На корпус действуют сосредоточенные силы, изгибающие и крутящие моменты от двигателей (рис. 16), а также гироскопические моменты от вращающихся частей механизмов, возникающие при маневрировании АВП.

Наибольшее распространение получили два конструктивных типа корпусов любительских АВП (или их комбинации):

  • ферменной конструкции, когда общая прочность корпуса обеспечивается с помощью плоских или пространственных ферм, а обшивка предназначается только для удержания воздуха в воздушном тракте и создания объемов плавучести;
  • с несущей обшивкой, когда общая прочность корпуса обеспечивается наружной обшивкой, работающей совместно с продольным и поперечным набором.
Примером АВП с комбинированной схемой конструкции корпуса является спортивный аппарат "Калибан-3" (рис. 17), построенный любителями Англии и Канады. Центральный понтон, состоящий из продольного и поперечного набора с несущей обшивкой, обеспечивает общую прочность корпуса и плавучесть, а бортовые части образуют воздуховоды (бортовые ресиверы), которые выполнены с легкой обшивкой, закрепленной на поперечном наборе.

Конструкция кабины и ее остекления должна обеспечивать возможность быстрого выхода водителя и пассажиров из кабины, особенно в случае аварии или пожара. Расположение стекол должно обеспечивать водителю хороший обзор: линия наблюдения должна находиться в границах от 15° вниз до 45° вверх от горизонтальной линии; боковой обзор должен быть не менее 90° на каждый борт.

Передача мощности на винт и нагнетатель

Наиболее просты для любительского изготовления клиноременная и цепная передачи. Однако цепная передача используется только для привода воздушных винтов или нагнетателей, оси вращения которых расположены горизонтально, да и то лишь в том случае, если есть возможность подобрать соответствующие мотоциклетные звездочки, так как их изготовление довольно сложно.

В случае клиноременной передачи для обеспечения долговечности ремней диаметры шкивов следует выбирать максимальными, однако при этом окружная скорость ремней не должна превышать 25 м/с .

Конструкция подъемного комплекса и гибкого ограждения

Подъемный комплекс состоит из нагнетательного агрегата, воздушных каналов, ресивера и гибкого ограждения воздушной подушки (в сопловых схемах). Каналы, по которым воздух подается от нагнетателя в гибкое ограждение, должны быть спроектированы с учетом требований аэродинамики и обеспечивать минимальные потери давления.

Гибкие ограждения любительских АВП обычно имеют упрощенную форму и конструкцию. На рис. 18 показаны примеры конструктивных схем гибких ограждений и способ проверки формы гибкого ограждения после его монтажа на корпусе аппарата. Ограждения этого типа обладают хорошей эластичностью, а благодаря закругленной форме не цепляются за неровности опорной поверхности.

Расчет нагнетателей, как осевых, так и центробежных, довольно сложен и может быть выполнен только при использовании специальной литературы.

Рулевое устройство, как правило, состоит из рулевого колеса или педалей, системы рычагов (или тросиковой проводки), соединенных с вертикальным рулем направления, а иногда и с горизонтальным рулем - рулем высоты.

Орган управления может быть сделан в виде автомобильного или мотоциклетного руля. Учитывая, однако, специфику конструкции и эксплуатации АВП как летательного аппарата, чаще используют авиационную конструкцию органов управления в виде рычага или педалей. В простейшем виде (рис. 19) при наклонении рукоятки вбок движение передается посредством закрепленного на трубе рычага к элементам штуртросовой проводки и далее на руль направления. Движения рукоятки вперед и назад, возможные благодаря ее шарнирному закреплению, передаются через толкатель, проходящий внутри трубы, к проводке руля высоты.

При педальном управлении независимо от его схемы необходимо предусматривать возможность перемещения либо сиденья, либо педалей для регулировки в соответствии с индивидуальными особенностями водителя. Рычаги изготовляют чаще всего из дюралюминия, трубы передачи крепятся к корпусу с помощью кронштейнов. Движение рычагов ограничивается проемами вырезов в направляющих, укрепленных на бортах аппарата.

Пример конструкции руля направления в случае размещения его в потоке воздуха, отбрасываемого движителем, показан на рис. 20.

Рули направления могут быть либо полностью поворотными, либо состоять из двух частей - неповоротной (стабилизатора) и поворотной (пера руля) при различных процентных соотношениях хорд этих частей. Профили сечения руля любых типов должны быть симметричными. Стабилизатор руля обычно неподвижно закрепляют на корпусе; главным несущим элементом стабилизатора является лонжерон, к которому подвешивается на шарнирах перо руля. Рули высоты, очень редко встречающиеся в любительских АВП, конструируются по тем же принципам и иногда даже бывают в точности такими же, как и рули направления.

Конструктивные элементы, передающие движение от органов управления к рулям и дроссельным заслонкам двигателей, обычно состоят из рычагов, стержней, тросиков и т. п. С помощью стержней, как правило, передаются усилия в обоих направлениях, тогда как тросики работают только на тягу. Чаще всего на любительских АВП используют комбинированные системы - с тросиками и толкателями.

От редакции

Все более пристальным вниманием любителей водно-моторного спорта и туризма пользуются суда на воздушной подушке. При сравнительно небольших затратах мощности они позволяют достичь высоких скоростей; для них доступны мелеющие и труднопроходимые реки; судно на воздушной подушке может парить и над землей, и надо льдом.

Впервые с вопросами проектирования малых СВП мы знакомили читателей еще в 4 выпуске (1965 г.), поместив статью Ю. А. Будницкого «Парящие суда». В был опубликован краткий очерк развития зарубежных СВП, включающий и описание ряда спортивно-прогулочных современных 1- и 2-местных СВП. С опытом самостоятельной постройки такого аппарата рижанином О. О. Петерсонсом редакция знакомила в . Публикация об этой любительской конструкции вызвала особенно большой интерес у наших читателей. Многие из них захотели построить такую же амфибию и просили указать необходимую литературу.

В этом году издательство «Судостроение» выпускает книгу польского инженера Ежи Беня «Модели и любительские суда на воздушной подушке». В ней вы найдете изложение основ теории образования воздушной подушки и механики движения на ней. Автор приводит расчетные соотношения, которые необходимы при самостоятельном проектировании простейших СВП, знакомит с тенденциями и перспективами развития данного типа судов. В книге приведено много примеров конструкций любительских аппаратов на воздушной подушке (АВП), построенных в Великобритании, Канаде, США, Франции, Польше. Книга адресована широкому кругу любителей самостоятельной постройки судов, судомоделистам, водномоторникам. Текст ее богато иллюстрирован чертежами, рисунками и фотографиями.

В журнале публикуется сокращенный перевод главы из этой книги.

Четыре наиболее популярных зарубежных СВП

Американское СВП «Эйрскэт-240»

Двухместное спортивное СВП с поперечным симметричным расположением мест. Механическая установка - автомоб. дв. «Фольксваген» мощностью 38 кВт, приводящий во вращение осевой четырехлопастной нагнетатель и двухлопастной воздушный винт в кольце. Управление СВП по курсу осуществляется с помощью рычага, связанного с системой рулей, размещенных в потоке за воздушным винтом. Электрооборудование 12 В. Пуск двигателя - электростартерный. Размеры аппарата 4,4x1,98х1,42 м. Площадь воздушной подушки - 7,8 м 2 ; диаметр воздушного винта 1,16 м, полная масса - 463 кг, максимальная скорость на воде 64 км/ч.

Американское СВП фирмы «Скиммерс инкорпорейтед»

Своеобразное одноместное СВП-мотороллер. Конструкция корпуса основана на идее использования автомобильной камеры. Мотор двухцилиндровый мотоциклетный мощностью 4,4 кВт. Размеры аппарата 2,9х1,8х0,9 м. Площадь воздушной подушки - 4,0 м 2 ; полная масса - 181 кг. Максимальная скорость - 29 км/ч.

Английское СВП «Эйр Райдер»

Этот двухместный спортивный аппарат - одни из наиболее популярных У судостронтелей-любителей. Осевой нагнетатель приводится во вращение мотоцикл, дв. рабочим объемом 250 см 3 . Воздушный винт - двухлопастной, деревянный; работает от отдельного мотора мощностью 24 кВт. Электрооборудование напряжением 12 В с авиационным аккумулятором. Пуск двигателей - электростартерный. Аппарат имеет размеры 3,81х1,98х2,23 м; клиренс 0,03 м; подъем 0,077 м; площадь подушки 6,5 м 2 ; масса порожнем 181 кг. Развивает на воде скорость 57 км/ч, на суше - 80 км/ч; преодолевает уклоны до 15°.

В таблице 1. приведены данные одноместной модификации аппарата.

Английское СВП «Ховеркэт»

Легкое туристское судно на пять-шесть человек. Существуют две модификации: «МК-1» и «МК-2». Центробежный нагнетатель диаметром 1,1 м приводится во вращение от автомоб. дв. «Фольксваген» рабочим объемом 1584 см 3 и потребляет мощность 34 кВт при 3600 об/мин.

В модификации «МК-1» движение осуществляется при помощи воздушного винта диаметром 1,98 м, приводимого во вращение вторым таким же двигателем.

В модификации «МК-2» для горизонтальной тяги использован автомоб. дв. «Порше 912» объемом 1582 см 3 и мощностью 67 кВт. Управление аппаратом осуществляется с помощью аэродинамических рулей, помещенных в потоке за воздушным винтом. Электрооборудование напряжением 12 В. Размеры аппарата 8,28х3,93х2,23 м. Площадь воздушной подушки 32 м 2 , полная масса аппарата 2040 кг, скорость передвижения модификации «МК-1» - 47 км/ч, «МК-2» - 55 км/ч.

Примечания

1. Упрощенная методика подбора воздушного винта по известному значению сопротивления, частоте вращения и скорости поступательного движения приведена в .

2. Расчеты клиноременных и цепных передач можно выполнить, пользуясь общепринятыми в отечественном машиностроении нормами.

Однажды зимой, когда я, прогуливаясь по берегу Даугавы, разглядывал занесенные снегом лодки, у меня родилась мысль - создать всесезонное средство передвижения, т. е. амфибию , которую можно было бы использовать и в зимнее время.

После долгих раздумий выбор мой пал на двухместный аппарат на воздушной подушке . Сначала ничего, кроме огромного желания создать такую конструкцию, у меня не было. Доступная мне техническая литература обобщала опыт создания только больших СВП, а по малым аппаратам прогулочно-спортивного назначения никаких данных найти я не смог, тем более что нашей промышленностью такие СВП не выпускаются. Итак, надеяться можно было только на собственные силы и опыт (о моем катере-амфибии на базе мотолодки «Янтарь» в свое время сообщалось в «КЯ»; см № 61).

Предвидя, что в будущем у меня могут найтись последователи, а при положительных результатах моим аппаратом может заинтересоваться и промышленность, я решил конструировать его на базе хорошо освоенных и имеющихся в продаже двухтактных двигателей.

В принципе аппарат на воздушной подушке испытывает существенно меньшие нагрузки, чем традиционный глиссирующий корпус катера; это позволяет конструкцию его делать более легкой. В то же время появляется и дополнительное требование: корпус аппарата должен иметь малое аэродинамическое сопротивление. Это необходимо учесть при разработке теоретического чертежа.

Основные данные амфибии на воздушной подушке
Длина, м 3,70
Ширина, м 1,80
Высота борта, м 0,60
Высота воздушной подушки, м 0,30
Мощность подъемной установки, л. с. 12
Мощность тяговой установки, л. с. 25
Полезная грузоподъемность, кг 150
Общий вес, кг 120
Скорость, км/ч 60
Расход топлива, л/ч 15
Емкость топливного бака, л 30


1 - руль; 2 - приборный щиток; 3 - продольное сиденье; 4 - подъемный вентилятор; 5 - кожух вентилятора; 6 - тяговые вентиляторы; 7 - шкив вала вентилятора; 8 - шкив двигателя; 9 - тяговый двигатель; 10 - глушитель; 11 - створки управления; 12 - вал вентиляторов; 13 - подшипники вала вентиляторов; 14 - ветровое стекло; 15 - гибкое ограждение; 16 - тяговый вентилятор; 17 - кожух тягового вентилятора; 18 - подъемный двигатель; 19 - глушитель подъемного двигателя;
20 - электростартер; 21 - аккумулятор; 22 - топливный бак.

Набор корпуса я изготовил из еловых реек сечением 50х30 и обшил 4-миллиметровой фанерой на эпоксидном клее. Оклейку стеклотканью не делал, опасаясь увеличения веса аппарата. Для обеспечения непотопляемости в каждый из бортовых отсеков поставил по две водонепроницаемые переборки, а также заполнил отсеки пенопластом.

Выбрана двухмоторная схема силовой установки, т. е. один из двигателей работает на подъем аппарата, создавая избыточное давление (воздушную подушку) под его днищем, а второй обеспечивает движение - создает тягу по горизонтали. Подъемный двигатель исходя из расчета должен был иметь мощность 10-15 л. с. Наиболее подходящим по основным данным оказался двигатель от мотороллера «Тула-200», но поскольку ни крепления, ни подшипники его не удовлетворяли по конструктивным соображениям, пришлось отлить из алюминиевого сплава новый картер. Этот двигатель приводит в движение 6-лопастной вентилятор диаметром 600 мм. Суммарный вес подъемной силовой установки вместе с креплениями и электростартером получился около 30 кг.

Одним из самых сложных этапов оказалось изготовление юбки - гибкого ограждения подушки, которое быстро изнашивается при эксплуатации. Применена имеющаяся в продаже брезентовая ткань шириной 0,75 м. Из-за сложной конфигурации стыков потребовалось около 14 м такой ткани. Полоса разрезалась на куски длиной, равной длине борта, с припуском на довольно сложную форму стыков. После придания необходимой формы стыки сшивались. Края ткани крепились к корпусу аппарата дюралевыми полосами 2х20. Установленное гибкое ограждение для повышения износостойкости я пропитал резиновым клеем, в который добавил алюминиевой пудры, придающей нарядный вид. Такая технология дает возможность реставрировать гибкое ограждение при аварии и по мере износа, подобно наращиванию протектора автомобильной шины. Надо подчеркнуть, что изготовление гибкого ограждения не просто отнимает много времени, но требует особой аккуратности и терпения.

Сборка корпуса и установка гибкого ограждения выполнялись в положении вверх килем. Затем корпус раскантовали и в шахте размером 800х800 установили подъемную силовую установку. Была подведена система управления установкой, и вот наступил самый ответственный момент; ее опробование. Оправдаются ли расчеты, поднимет ли сравнительно маломощный двигатель такой аппарат?

Уже при средних оборотах двигателя амфибия вместе со мной приподнялась и зависла на высоте около 30 см от земли. Запаса подъемной силы оказалось вполне достаточно, чтобы прогретый двигатель на полных оборотах поднимал даже четверых. В первые же минуты этих испытаний стали выявляться особенности аппарата. После соответствующей центровки он свободно передвигался на воздушной подушке в любом направлении даже от небольшого приложенного усилия. Создавалось впечатление, будто он плывет по водной поверхности.

Успех первого испытания подъемной установки и корпуса в целом окрылил меня. Закрепив лобовое стекло, я приступил к монтажу тяговой силовой установки. Вначале казалось целесообразным воспользоваться большим опытом постройки и эксплуатации аэросаней и установить двигатель с воздушным винтом сравнительно большого диаметра на кормовой палубе. Однако следовало учесть, что при таком «классическом» варианте существенно повысился бы центр тяжести столь малого аппарата, что неминуемо отразилось бы на его ходовых качествах и - главное - на безопасности. Поэтому я решил применить два тяговых двигателя, полностью аналогичных подъемному, и установил их в кормовой части амфибии, но не на палубе, а по бортам. После того, как я изготовил и смонтировал привод управления мотоциклетного типа и установил тяговые воздушные винты относительно малого диаметра («вентиляторы»), первый вариант аппарата на воздушной подушке был готов к ходовым испытаниям.

Для перевозки амфибии за автомашиной «Жигули» был изготовлен специальный трейлер, и вот летом 1978 г. я погрузил на него свой аппарат и доставил его на луг у озера под Ригой. Настал волнующий момент. В окружении друзей и любопытных я занял место водителя, завел подъемный двигатель, и мой новый катер повис над лугом. Завел оба тяговых двигателя. При увеличении числа их оборотов амфибия стала перемещаться по лугу. И тут стало ясно, что многолетнего опыта управления автомобилем и мотолодкой явно недостаточно. Все прежние навыки не годятся. Надо осваивать методы управления аппаратом на воздушной подушке, который может до бесконечности кружиться на одном месте, подобно юле. С увеличением скорости увеличивался и радиус поворота. Любые неровности поверхности вызывали поворот аппарата.

Освоившись с управлением, я направил амфибию по пологому берегу к поверхности озера. Оказавшись над водой, аппарат сразу же начал терять скорость. Тяговые двигатели стали поочередно глохнуть, заливаемые брызгами, вырывавшимися из-под гибкого ограждения воздушной подушки. При прохождении заросших участков озера вентиляторы втягивали камыши, кромки их лопастей выкрашивались. Когда же я выключил двигатели, а затем решил попробовать взять старт с воды, то ничего не вышло: аппарат мой так и не смог вырваться из «ямы», образованной подушкой.

В общем, то была неудача. Однако первое поражение не остановило меня. Я пришел к выводу, что при существующих характеристиках для моего аппарата на воздушной подушке недостаточна мощность тяговой установки; именно поэтому он не мог двинуться вперед при старте с глади озера.

За зиму 1979 г. я полностью переделал амфибию, уменьшив длину ее корпуса до 3,70 м, а ширину - до 1,80 м. Сконструировал и совершенно новую тяговую установку, полностью защищенную и от брызг, и от контакта с травой и камышом. Для упрощения управления установкой и снижения ее веса применен один тяговый двигатель вместо двух. Использована силовая головка 25-сильного подвесного мотора «Вихрь-М» с полностью переделанной системой охлаждения. Замкнутая система охлаждения объемом 1,5 л заполнена тосолом. Крутящий момент двигателя передается на расположенный поперек аппарата «гребной» вал вентиляторов при помощи двух клиновых ремней. Шестилопастные вентиляторы нагоняют воздух в камеру, из которой он вырывается (попутно охлаждая двигатель) за корму через квадратное сопло, снабженное створками управления. С аэродинамической точки зрения такая тяговая установка, видимо, не очень-то совершенна, но она довольно надежна, компактна и создает тягу около 30 кгс, оказавшуюся вполне достаточной.

В середине лета 1979 г. мой аппарат снова был перевезен на тот же луг. Освоившись с управлением, я направил его к озеру. На этот раз, оказавшись над водой, он продолжал движение, не теряя скорости, словно по поверхности льда. Легко, без помех, преодолевал отмели и камыши; особенно приятно было двигаться над заросшими участками озера, здесь не оставалось даже туманного следа. На прямом участке один из владельцев с мотором «Вихрь-М» пошел параллельным курсом, но вскоре отстал.

Особое удивление вызвал описываемый аппарат у любителей подледного лова, когда я продолжил испытания амфибии зимой на льду, который был покрыт слоем снега толщиной около 30 см. На льду было настоящее раздолье! Скорость можно было увеличить до максимальной. Точно ее не замерял, но опыт автоводителя позволяет утверждать, что она приближалась к 100 км/ч. При этом амфибия свободно преодолевала глубокие следы от мотонарт.

Рижской телестудией был снят и показан небольшой фильм, после чего я стал получать много запросов от желающих построить подобный амфибийный аппарат.