Поиск обрыва кабеля. Простейший детектор скрытой проводки на скорую руку Как сделать трассоискатель из старого плеера

Прибор для определения скрытой проводки: сигнализатор, индикатор, детектор скрытой проводки.
Каждый раз, когда мы сверлим отверстие в стене, то всегда имеется опасность повредить внутреннюю проводку. Что нужно предпринять, что бы случайно не повредить проводку? Для этого необходимо специальным прибором проверить ее наличие на данном участке стены, отметить место кабеля и минуя ее переразметить места для сверления.
А что, если проводка имеет разрыв? Как найти место обрыва?
Прибор для поиска скрытой проводки.
Extech DA30 - бесконтактный датчик переменного тока.
Работает в диапазоне от 200мА до 1000А, определяет наличие электромагнитного поля создаваемый переменным напряжением.
Способен работать через экранированные провода, кабель-каналы, металлические части выключателей и распределительные коробки.
Ручная установка позволяет отрегулировать чувствительности прибора для обнаружения проводки через стены.
Имеет звуковую и визуальную индикацию.
В комплект поставки прибора нахождения скрытой проводки входит карманный зажим с четырьмя батареями таблеточного типа LR44.
Отдельные модели приборов для поиска скрытой проводки имеют возможность определить даже когда он находится без напряжения.
Обычно порядок работы с таким прибором следующий:
1. Подключаем звуковой генератор к кабелю
а. Для кабелей с одним концевым коннектором подсоединяем красный зажим типа крокодил к проводу, а чёрный зажим к заземлению корпуса устройства.
б. Для проводов без концевого коннектора подсоедините красный зажим к одному проводу, а чёрный зажим к другому проводнику.
в. Для кабелей с модульными соединителями вставляем модули RJ11 непосредственно в соответствующий коннектор кабеля.
2. Устанавливаем переключатель звукового сигнала (Tone) в положение «Вкл.» (нажимаем кнопку).
3. На индуктивном пробнике нажимаем на копку которая находится сбоку «Вкл./Выкл.».
4. Подносим изолированный кончик пробника к нужному проводу, чтобы обнаружить сигнал, исходящий от звукового генератора.
5. Вращая регулятор чувствительности, настраиваем прибор на нужный уровень и проверяем кабель на предмет неисправности.
6. Самый громкий звуковой сигнал исходит от проводов, подключённых к звуковому генератору.
Примечание: Разъём для наушников находится на дне пробника.

Тестер - мультиметр для поиска скрытой проводки

LA-1014 - представляет собой прибор искатель срытой проводки (называют кабель - тестером) и мультиметр, т.е. универсальный прибор содержащий два в одном.
Прибор позволяет обнаружить скрытую проводку без напряжения, проверить состояние кабельных линий в телефонной и компьютерной и силовой сетях. С помощью LA-1014 можно определять обрыв, короткое замыкание и перехлест жил. Проверка коннекторов RJ45/RJ11.
Мультиметр позволяет измерять величину постоянного и переменного напряжения, силу тока, сопротивление, прозвонку диодов.
Состав прибора для поиска скрытой проводки.
1. Модульный соединитель RJ11.
2. Измерительные щуп с зажимом типа крокодил.
3. Светодиодный дисплей для проверки кабельных линий в телефонных сетях.
4. Светодиодный индикатор низкого уровня заряда батареи звукового генератора.
5. Кнопка Cont для режима проверки на обрыв.
6. Кнопка Tone для звукового генератора (переключатель звукового сигнала).
7. Кнопка Sel для выбора типа сигнала.
16. Измерительные щуп с зажимом типа крокодил.
17. Регулятор настройки уровня громкость - чувствительность.
18. Кнопка включения питания.
19. Отсек для источников питания.
20. Гнездо для наушников.

Схема прибора для определения повреждения проводки
Кроме определения скрытой проводки, прибор позволяет определить обрыв провода шнура питания таких как, видеокамеры, галогенные прожекторы, электрические утюги, дрели, мясорубки и подобных приборов. Шнур для подключения 220В, как правило его длина 1,5 - 2 метра 2-3х жильного кабеля имеющий сетевую вилку на конце. Из-за длительного использования провод подвергается механической деформации и напряжению, которые могут привести к обрыву, или реже, внутреннему замыканию в любой точке шнура. В подобных случаях мы заменяем кабель, т.к. найти дефектное место провода довольно сложно.
В 3-жильных кабелях практически трудно определить обрыв провода, без пробных надрезов кабеля, особенно в ПВХ-оболочке. Схема самодельного прибора поможет достаточно просто и быстро обнаружить место обрыва провода в 1-жильном, 2-жильном, и 3-жильном кабеле, без физического повреждения провода. Она построена на микросхеме CD4069, которая содержит 6 инверторов стандартной КМОП логики.
На инверторах N3 и N4 собран генератор импульсов, рабочая частота которого составляет примерно 1000 Гц (диапазон звуковых частот), она определяется номиналами установленных резисторов R3, R4 и конденсатора С1. Усилитель собранный на N1 и N2 усиливает слабый сигнал поступающий с датчика, тем самым определяется наличие переменного поля вокруг сетевого провода 230в. Наличие или отсутствие напряжение на выходе 10 усилителя N2 можете разрешить или заблокировать работу генератора.
Когда датчик (зонд) находится не так близко к проводу, к которому подведено переменное напряжение, выходной потенциал на ножке 10 инвертора N2 остается низким. В результате этого открытый диод D3 шунтирует цепь генератора. Одновременно, выход 6 инвертора Н3 имеет низкий потенциал - транзистор Т1 в закрытом состоянии - LED1 не светится. Когда датчик приближается ближе к проводнику с напряжением 230 в AC, 50 Гц, то при каждом положительном полупериоде переменного напряжения, потенциал выхода 10 инвертора N2 становится высоким, запускается генератор колебаний с частоте около 1кГц, красный светодиод (LD1) мигает. (Из-за инерционности свойств зрения, мы видим светодиод горящий непрерывно).
В виду циклической работы уменьшается ток потребления светодиодом, напряжения 3В постоянного тока достаточно для питания схемы прибора.

Схема прибора для обнаружения скрытой проводки .
Питание схемы осуществляется от двух элементов типа AG13 LR44, или им подобные по 1,5в R6 - AA или аккумуляторная батарея. Схема потребляет ток не более 3 мА при обнаружении сети переменного тока. Для аудио-визуальной индикации можно применить небольшой зуммер или ЖК, включаем их вместо Led 1 и резистора R5, но в таком случае потребление тока уже составит около 7 мА.
При помощи этого прибора можно быстро обнаружить неисправную лампу в последовательно соединенной новогодней гирлянде, если питание от 230 в переменного тока.
Данную схему можно смонтировать в небольшом отрезке трубки из ПВХ. Перед поиском обрыва проводам мультиметром или тестером проверьте на наличие напряжения, тока.
Затем подайте переменное 230в в линию, подключив провод имеющий повреждение к фазе, нейтраль к остальным проводам. Однако, если любой из оставшихся проводов тоже имеет неисправность, то оба провода, подключите к нейтрали. Для определения обрыва порой достаточно подать фазное напряжение на проверяемый провод.
В качестве датчика используется отрезок монтажного провода длиной 5 см. Для обнаружения места обрыва, включаем прибор переключателем S1 и медленно перемещаем зонд вдоль поврежденного провода, начиная с входной точки и двигаясь к концу. Светодиод светится при наличия поля, созданным напряжением переменного тока, когда датчик будет находится над место обрыва, то светодиод гаснет.
Во время тестирования может понадобиться изогнуть зонд, для увеличения чувствительности, так что бы при движении зонд был ближе к кабелю. Для исключения ложных срабатываний во время тестирования избегайте сильных электрических полей.
Техническое описание микросхемы CD4069 125 Kb

Схема простого прибора.
Прибор содержит всего 7 деталей: полевой транзистор VT1 типа КП302, КП303, делитель напряжения состоящий из двух резисторов R1 и R2, стрелочный индикатор от старого магнитофона РА1, выключатель питания SA1, элемент питания 1,5в. Датчиком WA1 является отрезок медного провода длиной несколько сантиметров. При приближении антенны WA1 к сетевому проводу находящийся под напряжением, он попадает в электромагнитное поле. Датчик подключен к затвору полевого транзистора VT1, в результате сопротивление исток - сток увеличивается. Протекающий ток через индикатор заставляет стрелку отклоняться. Чем больше ток, тем сильнее поле.
Настройка прибора сводится к подбору резистора R1, при отсутствии поля стрелка не должна отклоняться.

Если под рукой нет прибора для обнаружения скрытого провода, то его можно изготовит за короткое время, для этого необходим провод любой длины, желательно двухжильный, трансформатор малогабаритный, любой и кассетный магнитофон или плеер. Трансформатор выполнит роль датчика, припаиваем провод к трансформатор, а другой конец ко входу звукоснимателя. Скрытый провод должен быть под сетевым напряжением, т.е. включить выключатель свет в ванной и т.д. и подносим трансформатор к предполагаемому месту проводки - в динамике должен появиться фон переменного тока при приближении к скрытому проводу.
Оборвался провод – что делать? Обнаружитель электрической проводки.

При ремонте квартиры часто требуется знать места, по которым проведена скрытая электропроводка. Это необходимо по нескольким причинам.

Во-первых, при ремонте обычно необходимо сверлить отверстия для крепления в стенах различного оборудования. При этом попадание в проводку сверла дрели может, в лучшем случае, привести к порче электросети, а в худшем случае – нанести травму человеку.

Во-вторых, при замене старой скрытой проводки также требуется знать, где она проложена.

К сожалению, при ремонте не всегда имеется или частном доме. И хотя в соответствии с правилами по установке сетей (ПУЭ) кабеля должны размещаться строго горизонтально или вертикально, часто эти требования не выполняются, а схема домашнего электроснабжения смонтирована по самым коротким путям.

При ремонте вышедшей из строя скрытой проводки желательно также без разрушения стены точно определить места разрывов.

Различают два основных подхода к обнаружению закрытой проводки:

  1. По исправной сети обычно протекает переменный электрический ток.
  2. В соответствии с законами физики вокруг проводов с протекающим электричеством возникает электромагнитное поле. Большинство устройств для обнаружения скрытой проводки используют это свойство электрического тока.

  3. Другой принцип предполагает задействование с катушкой индуктивности. При попадании в его электромагнитное поле проводов или арматуры оно будет искажено, что будет отражено индикатором прибора.

Особенности использования приборов обнаружения скрытой электрической проводки

Для обнаружения скрытой проводки выпускается большое число различных приборов. Они имеют различную сложность, возможности и, конечно, разную цену. Стоимость таких устройств может колебаться в широких пределах.

Среди электриков-профессионалов большой популярностью пользуется индикатор скрытой проводки Е121. С помощью этого устройства можно находить внутреннюю электросеть в штукатурке на глубине до 7 см. Прибор прост в обращении и относительно недорогой. Цена составляет около 1350 рублей.

Широко используются в домашних условиях приборы серии MS из Китая. Достоинство этих устройств – малая цена. Недостаток состоит в том, что они реагируют не только на провода, но и на другой металл.

Поэтому для эффективной работы с приборами MS необходимо иметь определенный опыт с тем, чтобы отличать сигналы от медных проводов и от других предметов из металла.

Цена детектора MS 158 составляет 350-900 рублей.

Вместо усилителя в схему можно добавить мультивибратор и светодиод. При обнаружении скрытой проводки происходит запуск первого и мигание источника света.

Как найти обрыв скрытой проводки?

Возможным виновником пропадания света в доме может стать скрытая проводка. Обрыв в кабелях может возникнуть, например, из-за разрушения старой электросети или повреждения ее при сверлении стены.

Обнаружить обрыв в скрытой проводке можно с помощью указанных выше промышленных приборов. Как правило, в месте разрыва устройство подает соответствующий знак. Например, перестает издаваться звуковой сигнал.

Если в качестве индикатора используется приемник, то в месте обрыва издаваемый им звук, будет отличаться от обычного для него шума.

При отсутствии в наличии каких-либо устройств обрыв можно попытаться найти с помощью обычной таким инструментом, знает практически каждый). Этот метод работает только в случае, если произошел обрыв фазы.эта статья .

Для обнаружения проблемного места индикаторную отвертку при включенной сети надо медленно вести вдоль скрытой проводки и следить за поведением горящей лампочки.

Всякие отклонения от нормального свечения могут указывать на место обрыва.

Для случая, когда произошел разрыв нулевого провода, такой метод не действует. Чтобы проверить «ноль», необходимо сменить фазировку проводов.

Выводы :

  1. При ремонте и замене проводов сети часто необходимо обнаружить скрытую проводку.
  2. Для нахождения такой электросети имеется большое количество промышленных приборов, как отечественного, так и зарубежного производства.
  3. Для обнаружения обрыва можно использовать как специальные промышленные приборы, так и простые методы, в том числе, с использованием индикаторной отвертки.

Демонстрация прибора обнаружения внутренней электропроводки на видео

Гражданин К. давно мечтал поселиться где-нибудь на природе, вдали от шумной суетливой цивилизации большого города, среди тишины и покоя гармонии мира. И вот его мечта сбылась: он купил небольшой земельный участок на окраине села под строительство, в хорошем месте и даже с небольшим заброшенным садом… но тут-то ему пришлось столкнуться с таким проблематичным вопросом, как поиск трасс труб и кабельных линий, ведь не зная где они расположены:

  1. При строительстве можно повредить их, а если кабель находится под напряжением, то и подвести под риск собственную жизнь;
  2. О подключении к электричеству, газо- и водопроводу, не зная, где он проходит, можно забыть.

Но как найти эти злосчастные линии? Разрывать весь грунт и искать наугад?.. Вовсе нет! Просто нужно обратиться к помощи такого полезного прибора, как трассоискатель, позволяющего отыскать линии быстро и безопасно. Сегодня прибор можно приобрести в каждом специализированном магазине, можно изготовить трассоискатель своими руками. А как, мы и расскажем далее. Но, прежде, стоит разобраться: что это за прибор такой, трассоискатель.

Немного теории

Итак, трассоискатель - это уникальный прибор, позволяющий обнаружить линию прохождения кабеля или залегания труб. Современные устройства делятся на два типа по принципу работы;

  • Контактный принцип;
  • Индукционная разновидность.

Контактный принцип используется в случае разрыва кабеля, находящегося под напряжением.

Прибор, работающий по индукционному принципу, способен определять, как кабель под напряжением, так и пассивную трассировку, то есть, не подающую активных сигналов подземную коммуникацию. Индукционный метод более сложный и базируется на улавливании устройством высоких частот и регистрации данных показателей на специальном индикаторе.

Трассоискатели также подразделяются на одно- и многочастотные. Первые - наиболее приемлемый вариант, такие приборы несложно смонтировать самостоятельно, и применяются они для определения коммуникаций, расположенных под грунтом в том случае, когда одни трассы не пересекают другие, и, таким образом, не перекликаются исходящие от них сигналы.

Многочастотные устройства - более сложная конструкция и используются для определения сигналов трасс в случае высокой плотности кабельных линий и трубопроводов. Мультичастотные устройства способны определять указанную в программе частоту, не сбиваясь на другие. Современные приборы оборудованы программным обеспечением, что значительно облегчает работу, которая для пользователя заключается в одном нажатии на клавишу и прочтении полученной информации, высветившейся на индикаторе.

Технология сборки

Устройство обладает несложной конструкцией и состоит из двух компонентов - приемника, на который поступает сигнал, и генератора, регулирующего работу прибора. Чем сильнее генератор, тем мощнее будет прибор и значительнее дальность расстояния, на котором он способен определять линии. Так, устройство, работающие от аккумулятора в 24 В, способно трассировать местность на 4 км и работать около ста часов бесперебойно. На работающий по такому принципу трассоискатель схема приведена ниже.

Как видно из чертежа, устройство комплектуется следующим образом: на транзисторе Т1, П14 собирается модулятор и генератор. При условиях, что выключатель приходит в разомкнутое состояние, транзистор с цепью базы создают генератор частой 1 кГЦ. И при включении контура, даже частичном, становится возможным увеличить нагрузку на прибор. Таким образом, при включении конденсатора, резко увеличивается мощность генератора, и он начинает работать в УКВ диапазоне.

Чтобы сконструировать трассоискатель кабельных линий своими руками, необходимо тщательным образом проработать его вторую часть, приемник.

Здесь важнейшим условием является тот факт, что магнитная антенна настраивается на напряжение звуковых частот генератора. Проходящий через транзисторы сигнал создает стабильную схему, а транзисторные каскады обеспечивают необходимое усиление, что гарантирует бесперебойную работу устройства.

Чтобы смонтировать кабельный трассоискатель схема на который приведена выше, потребуется следующее:

  • Берем гетинаксовую плату, которая будет основой будущего прибора.
  • Устанавливаем на переднюю панель клеммы питания.
  • Наматываем на ферритовое кольцо (диаметр 0.8 см) трансформатор первый, а второй - на стальной сердечник.

При сборке руководствуйтесь чертежами, чтобы не допустить ошибки.

Как сделать трассоискатель из старого плеера?

У многих в подвалах и на антресолях можно найти массу занятных вещиц, которые при умелой доработке, могут еще прослужить своему хозяину не один год. Так, из простого старого плеера можно сконструировать трассоискатель.

Добавляем клеммы питания и займемся поисковой катушкой. Для этого разбираем РКН и снимаем контактную катушку. Чтобы демонтировать пластину реле, нужно зажать ее в тисках и при помощи молотка выбить ее из катушки. Эта работа займет пару секунд не более. Теперь, когда все детали для будущего прибора получены, соединяем обмотки и вставляем в сердцевину стержень, который зажимаем с двух сторон.

В качестве зажимов может выступить любой подручный предмет, например пластмассовая трубка, которую достаточно только немного подточить, согнуть, чтобы деталь подходила по размеру и выполняла свою рабочую функцию фиксатора. Потратим еще пару минут на корректировку всего устройства, проверяем разводку, разъемы, надежность конструкции. Затем припаиваем провод к катушке, который после должен быть соединен с усилителем.

Работа готова. Как видите, это совсем не сложно для тех, кто имеет хотя бы элементарные знания в электронике.

Теперь вы знаете, как собрать трассоискатель своими руками схемы и поэтапная инструкция поможет вам выполнить эту нехитрую работу быстро и качественно. А нам только остается напоследок пожелать вам удачи и доброго дня!



Прибор предназначен для поиска электросетей переменного тока под землёй и в каналах бетонных и кирпичных зданий, их местоположение и глубину залегания.

В отключенные кабельные линии перед поиском трассы следует подать напряжение звуковой частоты достаточной мощности, а конец линии временно замкнуть, также следует поступить при возможном механическом повреждении, электромагнитное поле в поврежденном месте всегда в несколько раз выше, чем в исправном участке линии.

Принцип действия прибора основан на преобразовании электромагнитного поля электросети частотой 50 Гц в электрический сигнал, уровень которого зависит от напряжения и тока в проводнике, а также от расстояния до источника излучения и экранирующих факторов грунта или бетона.

Схема прибора состоит из датчика электромагнитного поля BF1, предварительного усилителя на транзисторе VT1, усилителя мощности DA1 и выходного контрольного устройства состоящего из звукового анализатора на наушниках ВA1 , светового пикового индикатора HL1 и гальванического прибора индикации мощности – PA1. Для снижения искажений сигнала электромагнитного поля в схемы усилителей введены цепи отрицательной обратной связи. Использование на выходе мощного усилителя низкой частоты позволяет подключать нагрузку любого сопротивления и мощности.

В схему введены установочные резисторы и регуляторы, позволяющие оптимизировать режим работы схемы устройства. Прибором можно оценить глубину залегания электросети от поверхности земли.

Для электропитания схемы прибора достаточно источника тока типа «Крона» на 9 вольт или КБС на напряжение 2 * 4,5 вольта.

Для устранения случайной разрядки элементов питания в схеме используется двойное выключение: размыканием плюсовой шины питания шины питания при отключении наушников BA1.

Электромагнитный датчик BF1 используется от высокоомных телефонных наушников типа ТОН -1 со снятой металлической мембраной. Он подключен к предварительному усилителю на транзисторе VT1 через разделительный конденсатор C2. Конденсатор С3 снижает уровень высокочастотных помех, особенно радио- помехи. Усилитель на транзисторе VT1 имеет обратную связь по напряжению с коллектора на базу через резистор R1, при повышении напряжения на коллекторе повышается напряжение на базе, транзистор открывается и напряжение коллектора снижается. Питание на усилитель подается через резистор R2 нагрузки с фильтра C1, R4. Резистор R3 в цепи эммитера транзистора VT1 смешает характеристику транзистора и за счёт отрицательного уровня напряжения несколько снижает усиление при пиках сигнала. Предварительно усиленный сигнал электромагнитного поля через конденсатор С4 гальванической развязки поступает на регулятор усиления R5 и далее через резистор R6 и конденсатор С6 на вход (1) аналоговой микросхемы усилителя мощности DA1. Конденсатор С5 снижают частоты более 8000 Гц для лучшего восприятия сигнала.

Усилитель мощности звуковой частоты на микросхеме DA1 с внутренним устройством защиты от коротких замыканий в нагрузке и перегрузки позволяет с хорошими параметрами усилить входной сигнал до величины достаточной для работы нагрузки мощностью до 1 ватта.

Искажения в сигнале вносимые усилителем в процессе работы зависят от значения отрицательной обратной связи. Цепь ОС состоит из резисторов R7,R8 и конденсатора C7. Резистором R7 возможно подстроить коэффициент обратной связи исходя из качественных показателей сигнала.

Конденсатор С9 и резистор R8 устраняют самовозбуждение микросхемы на низких частотах.

Через разделительный конденсатор С10 усиленный сигнал поступает на нагрузку ВА1 , индикатор уровня РА1 и светодиодный индикатор HL1.

Электродинамические наушники подключаются к выходу усилителя через разъём XS1 и XS2 , перемычка в XS1 замыкает цепь подачи напряжения питания с батареи GB1 на схему. Световой индикатор HL1 контролирует наличие перегрузки выходного сигнала.

Гальванический прибор РА1 указывает на уровень сигнала в зависимости от глубины залегания электросети и подключен к выходу усилителя через разделительный конденсатор С11 и умножитель напряжения на диодах VD1-VD2.

В приборе поиска электросетей нет дефицитных радиодеталей: приемник электромагнитного поля BF1 можно выполнить из малогабаритного согласующего трансформатора или электромагнитной катушки.

Резисторы типа С1-4 или МЛТ 0,12 , конденсаторы типа КМ, К53.

Транзистор обратной проводимости КТ 315 или КТ312Б. Диоды импульсные на ток до 300 мА.

Иностранный аналог микросхемы DA1 – TDA2003.

Прибор уровня РА1 использован от индикатора уровня записи магнитофонов на ток до 100мкА.

Светодиод HL1 любого типа. Наушники ВА1 – ТОН-2 или малогабаритные от плееров.

Правильно собранное устройство начинает работать сразу, положив датчик электромагнитного поля на сетевой шнур включенного паяльника установить резистором R7 максимальную громкость сигнала в наушниках, при

среднем положении регулятора R5 «Усиление».

Все радиодетали схемы расположены на печатной плате кроме датчика BF1 , он установлен в отдельной металлической коробочке. Батарея питания – КБС закреплена снаружи корпуса на скобку. Все корпуса с радиокомпонентами закреплены на алюминиевой тросточке.

Испытание прибора поиска электросетей можно начать не выходя из дома, достаточно включить свет одной из ламп и уточнить трассу в стене и потолке от выключателя до лампы, а затем перейти на поиск трасс под землёй во дворе дома.

Литература:

1. И.Семёнов Измерение больших токов. «Радиомир» №7 /2006 год стр.32

2. Ю.А.Мячин 180 аналоговых микросхем. 1993г.

3. В.В.Мукосеев и И.Н. Сидоров Маркировка и обозначение радиоэлементов. Справочник. 2001г.

4. В.Коновалов. Прибор поиска электропроводов – Радио,2007,№5 ,С41.

5. В.Коновалов. А. Вантеев Поиск подземных электросетей, Радиомир №11, 2010, С16.

Часто перед проведением каких-нибудь земляных работ или даже с целью обслуживания проложенного под землей кабеля, необходимо этот самый кабель найти. Согласитесь, будет весьма досадным - повредить проложенный под землей кабель, например зацепив его ковшом экскаватора или случайно пробурив.

Чтобы подобных казусов избежать, необходимо предварительно получить достоверную информацию о месте пролегания кабеля под землей, это же касается и подземных коммуникационных трубопроводов.

Если информация о месте проложенного под землей кабеля не будет достоверной или окажется недостаточно точной, то неминуемы лишние затраты и ошибки, а ошибки такие иногда чреваты плачевными последствиями для здоровья и даже для жизни людей.

Состояние подземных кабелей позволяют оценить трассоискатели, но иногда требуется локализовать кабель под землей, чтобы дальше провести его внимательный осмотр и принять решение о целесообразности тех или иных дальнейших действий. Именно о способах локализации кабелей под землей и пойдет речь в данной статье.

Как вы уже поняли, поиск подземного кабеля — дело ответственное, и требует большой внимательности и аккуратности. Давайте же рассмотрим способы поиска кабеля под землей.

Найдите документацию

В принципе любой объект, на территории которого имеются подземные кабели, имеет соответствующую документацию. Чертежи и схемы вы можете запросить в администрации города или у коммунальной службы, в ведомстве которой находится данный объект.

На этих чертежах должна быть представлена вся информация о подземных коммуникациях на территории объекта: подземные кабели, трубы, каналы и т. д. Эта документация станет для вас источником исходных данных, от которых можно будет оттолкнуться, чтобы знать где искать. Данные могут оказаться неточными, и тогда следующие шаги оператора позволят уточнить место положения кабеля под землей.

Прозондировать грунт на наличие закопанного кабеля, как один из вариантов, поможет георадар.

Георадары — это радиолокаторы, с помощью которых можно исследовать стены зданий, воду, землю, но не воздух. Данные геофизические приборы являются электронными устройствами, функционирование которых можно описать следующим образом.

Передающая антенна излучает радиочастотные импульсы в исследуемую среду, затем отраженный сигнал поступает на приемную антенну и обрабатывается. Процессы синхронизированы так, что система позволяет например на экране ноутбука увидеть место, где проходит подземный кабель.

Использование георадара, работающего на принципе излучения и приема электромагнитных волн, позволяет точно выявить глубину залегания и размер подземного объекта. С помощью георадара легко найти пластиковые трубы и оптоволоконные кабели под землей. Но отличить пластиковую трубу с водой от уплотнения в грунте сможет лишь профессионал. Тем не менее, приблизительно выявить расположение подземных коммуникаций в разного рода грунтах можно. Документация поможет оператору сориентироваться и понять, что он обнаружил — трубу с водой или трубу с кабелем.

Отрицательными факторами при работе с георадаром будут: высокий уровень грунтовых вод, глинистый грунт, наносы, - в силу их высокой проводимости, и, как следствие, возможности прибора будут ниже. Разнородные осадочные породы и скальный грунт способствуют рассеиванию сигнала.

Для правильной интерпретации полученной информации важно обладать достаточным опытом в данной сфере, и лучше всего, если оператором будет квалифицированный профессионал. Сам прибор довольно дорогой, и качество его использования, как вы уже догадались, сильно зависит от условий исследуемой среды.


В некоторых случаях температура проложенного под землей силового кабеля может сильно отличаться от температуры окружающего кабель грунта. И иногда разности температур может оказаться достаточно для точной локализации кабеля. Но опять же, внешние условия сильно влияют, и например ветер или солнечный свет значительно скажутся на результате анализа.

Наиболее верный способ поиска кабеля под землей — использовать метод электромагнитной локации. Это наиболее популярный и поистине универсальный способ поиска любых проводящих коммуникаций под землей, в том числе и кабелей. По количеству получаемой информации, данный метод, пожалуй, лучший.

Обнаруживается граница зоны залегания кабеля. Идентифицируется проводящий материал подземного объекта. Измеряется глубина залегания кабеля путем оценки электромагнитного поля от центра подземного кабеля. Может работать с любым типом грунта с одинаковой эффективностью. Трассоискатель имеет небольшой вес и не требует при обращении с собой специальных навыков от оператора.

Электромагнитный трассоискатель кабельных линий использует в процессе своей работы всем известный принцип электромагнитной индукции: любой металлический проводник с током образует вокруг себя электромагнитное поле. В случае силового кабеля - это ток рабочего напряжения линии, для стального трубопровода - вихревой ток наводки. Именно эти токи и улавливаются прибором.

Андрей Повный