Какими из перечисленных свойств обладают фуллерены. Фуллерены: история открытия и свойства. Физические свойства и прикладное значение фуллеренов

Фуллерены в Природе существуют повсюду, и особенно там, где есть углерод и высокие энергии. Они существуют вблизи углеродных звезд, в межзвездном пространстве, в местах попадания молний, вблизи кратеров вулканов, образуются при горении газа в домашней газовой плите или в пламени обычной зажигалки.

В местах скопления древних углеродных пород также обнаруживаются фуллерены. Особое место принадлежит карельским минералам - шунгитам. Этим породам, содержащим до 80% чистого углерода, около 2-х миллиардов лет. Природа их происхождения до сих пор не ясна. Одно из предположений – падение большого углеродного метеорита.

Фуллерены в шунгитах (Fullerenes in Shungites Stone) - тема, широко обсуждаемая во многих печатных изданиях и на страницах Интернет-сайтов. По этому поводу существует немало противоречивых мнений, в связи, с чем и у читателей, и у пользователей шунгитной продукцией возникает немало вопросов. Действительно ли шунгиты содержат молекулярную форму углерода – фуллерены? Содержат ли лечебные «Марциальные воды» фуллерены? Можно ли пить воду, настоянную на шунгите, и какова от этого будет польза? Основываясь на своем опыте научных исследований свойств различных шунгитов, ниже мы приводим свое мнение по поводу этих и некоторых других, часто задаваемых вопросов.

В настоящее время широкое распространение получила продукция, изготовляемая с использованием карельских шунгитов. Это различные фильтры для водоочистки, пирамиды, кулоны, изделия, экранирующие от электро-магнитных излучений, пасты и просто шунгитный щебень и многие другие виды продукции, предлагаемой в качестве профилактических, лечебно-оздоровительных средств. При этом, как правило, в последние годы лечебные свойства различных видов шунгитов приписывают содержащимся в них фуллеренам.

Вскоре, после открытия в 1985 году фуллеренов, начался активный поиск их в Природе. Фуллерены были обнаружены в карельском шунгите, о чем сообщалось в различных научных изданиях . В свою очередь нами были разработаны альтернативные методические подходы по выделению фуллеренов из шунгитов и доказательству их присутствия. В исследованиях анализировались образцы, отобранные в разных районах Заонежья, где залегают шунгитовые породы. Перед анализом образцы шунгитов измельчались до микродисперсного состояния.

Напомним, что шунгиты представляют собой ажурную силикатную решетку, пустоты которой заполнены шунгитным углеродом, который по своей структуре является промежуточным продуктом между аморфным углеродом и графитом. Также в шунгитном углероде присутствуют природные органические низкои высокомолекулярные соединения (ПОНВС) невыясненного химического состава. Шунгиты различаются по составу минеральной основы (алюмосиликатной, кремнистой, карбонатной) и составу шунгитного углерода. Шунгиты подразделяются на малоуглеродистые (до 5% С), среднеуглеродистые (5 - 25% С) и высокоуглеродистые (25 - 80% С). После полного сжигания шунгитов в золе, кроме кремния, находят Fe, Ni, Ca, Mg, Zn, Cd, V, Mo, Cu, Ce, As, W и др. элементы.

Фуллерен в шунгитном углероде находится в виде особых, полярных донорно-акцепторных комплексов с ПОНВС. Поэтому эффективная экстракция фуллеренов из него органическими растворителями, например толуолом, в котором фуллерены хорошо растворимы, не происходит и выбор такого метода извлечения часто приводит к противоречивым результатам об истинном наличии фуллеренов в шунгитах.

В связи с этим нами был разработан метод ультразвуковой экстракции водно-детергентной дисперсии шунгитов с последующим переводом фуллеренов из полярной среды в фазу органического растворителя . После нескольких стадий экстракции, концентрирования и очистки удается получить раствор в гексане, УФ-вид и ИК-спектры которого являются характерными спектрам чистого фуллерена С 60 . Также четкий сигнал в масс-спектре с m/z = 720 (рис. ниже) является однозначным подтверждением наличия в шунгитах только фуллерена С 60 .

252 Cf-ПД масс-спектр экстракта из шунгита. Сигнал при 720 а.е.м – фуллерен С 60 , а сигналы с 696, 672 –характерные осколочные ионы фуллерена С 60 , образующиеся в условиях плазменно-десорбционной ионизации.

Однако нами было обнаружено, что далеко не каждый образец шунгита содержит фуллерены. Из всех образцов шунгита, предоставленных нам Институтом геологии Карельского НЦ РАН (Петрозаводск, Россия) и отобранных из разных районов залегания шунгитовых пород – фуллерен С 60 был обнаружен только в одном образце высокоуглеродистого шунгита, содержащего более 80 % углерода. Причем фуллерена в нем содержалось около 0,04 мас. %. Из этого можно сделать вывод, что далеко не каждый образец шунгита содержит фуллерен, по крайней мере, в количестве доступном для его обнаружения современными высокочувствительными методами физико-химического анализа.

Наравне с этим, хорошо известно, что шунгиты могут содержать достаточно большое количество примесей, в том числе ионов тяжелых поливалентных металлов. И поэтому вода, настоянная на шунгитах, может содержать нежелательные, токсичные примеси.

Но, почему же тогда Марциальная вода (Карельская природная вода, проходящая через шунгитосодержащие породы) обладает столь уникальными биологическими свойствами. Напомним, что еще во времена Петра I, и по его личной инициативе, в Карелии был открыт лечебный источник «Марциальные воды» (подробней, см. ). Долгое время никто не мог объяснить причину особых лечебных свойств этого источника. Предполагалось, что повышенное содержание железа в этих водах является причиной оздоровительных эффектов. Однако есть много железосодержащих источников на Земле, но, как правило, лечебные эффекты от их приема весьма ограничены. Лишь после обнаружения фуллерена в шунгитовых породах, сквозь которые протекает источник, возникло предположение о том, что фуллерен и есть главная причина, квитэсценция лечебного действия Марциальных вод .

Действительно, вода длительное время проходящая через пласты «отмытой» шунгитовой породы, уже не содержит ощутимых количеств вредных примесей. Вода «насыщается» той структурой, которую ей задает порода. Фуллерен, содержащийся в шунгите, способствует упорядочению водных структур и образованию в ней фуллереноподобных гидратных кластеров и приобретению уникальных биологических свойств Марциальных вод. Шунгит, допированный фуллереном, является своеобразным природным структуризатором проходящей через него воды. В то же время никто ещё не смог обнаружить фуллерены в Марциальных водах или в водном настое шунгита: или они из шунгитов не вымываются, или если и вымываются, то в столь мизерных количествах, которые не детектируются ни одним из известных методов. К тому же хорошо известно, что фуллерены в воде самопроизвольно не растворяются. И если бы молекулы фуллеренов содержались бы в Марциальной воде, то ее полезные свойства сохранялись бы очень долгое время. Однако она активна лишь непродолжительное время. Также, как и «талая вода», насыщенная кластерными, льдоподобными структурами, Марциальная вода, содержащая живительные фуллереноподобные структуры, сохраняет свои свойства лишь несколько часов. При хранении Марциальной воды, также как и «талой», упорядоченные водные кластеры саморазрушаются и вода приобретает структурные свойства, как у обычной воды. Поэтому такую воду нет смысла разливать в емкости и хранить длительное время. В ней отсутствует структурообразующий и структуроподдерживающий элемент – фуллерен С 60 в гидратированном состоянии, который способен сохранять упорядоченные кластеры воды сколь угодно долго. Другими словами, для того, чтобы вода в течение длительного времени сохраняла свои естественные кластерные структуры, необходимо постоянное присутствие в ней структурообразующего фактора. Для этого молекула фуллерена является оптимальной, в чем мы убедились, исследуя многие годы уникальные свойства гидратированного фуллерена С 60 .

Все началось в 1995 году, когда нами был разработан метод получения молекулярно–коллоидных растворов гидратированных фуллеренов в воде. Тогда же мы познакомились с книгой, рассказывающей о необычных свойствах Марциальных вод . Мы попробовали воспроизвести природную суть Марциальных вод в лабораторных условиях. Для этого была использована вода высокой степени очистки, к которой по специальной технологии добавлялся гидратированный фуллерена С 60 в очень малых дозах. После этого стали проводить различные биологические испытания на уровне отдельных биомолекул, живых клеток и целостного организма. Результаты оказались поразительными. Практически при любой патологии мы обнаруживали только положительные биологические эффекты действия воды с гидратированным фуллереном С 60 , причем эффекты её применения не только полностью совпадали, но и даже превосходили по многим параметрам, эффекты, которые были описаны для Марциальных вод еще в Петровские времена. Многие патологические изменения в живом организме уходят, и он возвращается к своему нормальному, здоровому состоянию. А ведь это не лекарственный препарат целенаправленного действия и не чужеродное химическое соединение, а просто шарик углерода, растворенный в воде. Причем, складывается впечатление, что гидратированный фуллерен C 60 помогает вернуть в «нормальное состояние» любые негативные изменения в организме за счет восстановления и поддержания тех структур, которые он породил, как матрица, в процессе зарождения жизни.

Поэтому, видимо, неслучайно Орлов А.Д. в своей книге "Шунгит - камень чистой воды., сравнивая свойства шунгитов и фуллеренов, говорит о последних как о квинтэссенции здоровья.

1. Buseck et al. Fullerenes from the Geological Environment. Science 10 July 1992: 215-217. DOI: 10.1126/science.257.5067.215.
2. Н.П. Юшкин. Глобулярная надмолекулярная структура шунгита: данные растровой туннельной микроскопии. ДАН, 1994, т. 337, № 6 с. 800-803.
3. В.А. Резников. Ю.С. Полеховский. Аморфный шунгитовый углерод – естественная среда образования фуллеренов. Письма в ЖТФ. 2000. т. 26. в. 15. с.94-102.
4. Peter R. Buseck. Geological fullerenes: review and analysis. Earth and Planetary Science Letters.V 203, I 3-4, 15 November 2002, Pages 781-792
5. N.N. Rozhkova, G. V.Andrievsky. Aqueous colloidal systems based on shungite carbon and extraction of fullerenes from them. The 4 th Biennial International Workshop in Russia "Fullerenes and Atomic Clusters" IWFAC"99 October 4 - 8, 1999, St. Petersburg, Russia. Book of Abstracts, p.330.
6. Н.Н Рожкова, Г.В. Андриевский. Фуллерены в шунгитовом углероде. Сб. научн. трудов междунар. симпозиума “Фуллерены и фуллереноподобные структуры”: 5-8 июня 2000, БГУ, Минск, 2000, С. 63-69.
7. Н.Н. Рожкова, Г.В. Андриевский. Наноколлоиды шунгитового углерода. экстракция фуллеренов водосодержащими растворителями. Сб. Научн. трудов III международного семинара "Минералогия и жизнь: биоминеральные гомологи", 6-8 июня 2000 г., Сыктывкар, Россия, Геопринт, 2000, С.53-55.
8. С.А. Вишневский. Лечебные местности Карелии. Государственное издательство Карельской АССР, Петрозаводск, 1957, 57 с.
9. Фуллерены: Квинтэссенция Здоровья. Глава на с. 79-98 в книге: А.Д. Орлов. "Шунгит - камень чистой воды."Москва-СПб: "Издательство "ДИЛЯ", 2004. - 112 с.; и в Интернете на сайте (www.golkom.ru/book/36.html).

– одна из форм чистого углерода, в котором атомы соединены между собой в кристаллическую решетку, напоминающую по форме футбольный мяч. В зависимости от числа атомов фуллерены могут низшими (от 24х до 70 атомов) и высшими (70 и более атомов). Практический интерес представляют молекулы фуллерена с 60 и 70 атомами как наиболее распространенные (С60 и С70 соответственно).

Фуллерены, изомерный ряд:


Благодаря своим уникальным свойствам: бактерицидным, антиоксидирующим, сорбирующим, фуллерены в будущем имеют серьезную перспективу применения в медицине:

Добавка в органические масла, косметология, лечебная косметика: средства от псориаза, дерматитов и грибка, средства от выпадения волос, средства для избавления от шрамов, растяжек, пигментаций.
Фармакологические препараты: противоожоговые и ранозаживляющие препараты (ускорение процесса заживлния в 2-2.5 раза, обезболивание), нетоксичные антибактериальные и дезинфицирующие средства, лекарства от гастрита, язвы, рака ЖКТ, туберкулеза и бактериальных язв, АКНЕ. Офтальмологические и гинекологические препараты (не разъедает слизистую). Иммуностимулирующие и противоаллергические препараты (одновременно). Потенциально лекарства от рака.
БАДы: фуллерен – мощный антиоксидант (антиоксидирующая способность выше чем у аскорбиновой кислоты в 135 раз), нейтрализует свободные радикалы.

Раневое покрытие с применением гидратированных фуллеренов (фуллеренолов С(60/70)ОН(Х)):

Влияние фуллеренов на опухолевый рост:

Являясь устойчивой формой наночастиц углерода, фуллерены обеспечивают однородные свойства технических монокристаллов и пленок.

Электроника и оптика:

Нелинейная оптика: пленки для оптических линз.
Сверхпроводящие соединения: карбид кремния высокой плотности, полученный из фуллеренов.
Солнечные элементы: пленки на карбиде кремния высокой плотности повышают эффективность солнечной энергетики до +30%.
Промышленные и конструкционные материалы:
Добавка в промышленные масла, резины и пластики: эффективность машинного масла увеличивается в 2-3 раза, срок службы изделий из резины и плстика увеличивается в 4 раза, также повышается холодоустойчивость этой продукции.
Защитные покрытия: улучшенный антипригарные покрытия и покрытия с низким трением.
Дисперсно упрочненные композиционные материалы.
Фуллереновые добавки для роста алмазных пленок.

Фуллереновая плёнка:

Модель фуллерита:

Единственный способ получать существенные объемы фуллерена – это т.н. метод Кречмера, где два углеродных стержня сгорают в плазменной дуге. Он позволяет получать 0.2-0.5% фуллерена от массы стержней. Это медленный процесс и для наработки значимого количества продукта необходимо несколько суток и огромное количество электроэнергии (современные установки потребляют около 50КВт). Но это еще не все, далее необходимо «отмыть» фуллерен от ненужной углеродной сажи. На это, в зависимости от применяемой технологии, уходит от 2х до 4х недель. При этом расходуется большое количество растворителя, т.к. к воде фуллерен не растворяется.

Принципиальная схема установки Кречмера:

Таким образом, из-за непомерной сложности и дороговизны производства, фуллерены всегда вызывали чисто научный интерес, но не более.

Российские ученые в Лаборатории Наноуглеродных Материалов при СПБГПУ добились значительных результатов как в области получения фуллерена, так и области его отмывки и получения его важных модификаций. Разработанные ими методы позволяют интенсифицировать процесс горения углеродных стержней, что позволило увеличить КПД перехода сажи в фуллерен до единиц процента(в 15-20 раз).

Так же в лаборатории производится анализ качества продукта. Для этого используется современнейшие методы контроля: хроматографический, ИК-спекрометрический, массспектрометрический.

Масс спектрограмма фуллерена:

В данный момент лаборатория активно сотрудничает с несколькими медицинскими и техническими НИИ. Результатом такого сотрудничества уже стали завершенные исследования и патенты (

Открытие фуллеренов - новой формы существования одного из самых распространенных элементов на Земле - углерода, признано одним из удивительных и важнейших открытий в науке XX столетия. Несмотря на давно известную уникальную способность атомов углерода связываться в сложные, часто разветвленные и объемные молекулярные структуры, составляющую основу всей органической химии, фактическая возможность образования только из одного углерода стабильных каркасных молекул все равно оказалось неожиданной. Экспериментальное подтверждение того, что молекулы подобного типа, состоящие из 60 и более атомов, могут возникать в ходе естественно протекающих в природе процессов, произошло в 1985 г. И задолго до этого некоторые авторы предполагали стабильность молекул с замкнутой углеродной сферой. Однако эти предположения носили сугубо умозрительный, чисто теоретический характер. Вообразить, что такие соединения могут быть получены путем химического синтеза, было довольно трудно. Поэтому данные работы остались незамеченными, и внимание на них было обращено только задним числом, уже после экспериментального обнаружения фуллеренов. Новый этап наступил в 1990 г., когда был найден метод получения новых соединений в граммовых количествах, и описан метод выделения фуллеренов в чистом виде. Очень скоро после этого были определены важнейшие структурные и физико-химические характеристики фуллерена С 60 - наиболее легко образующегося соединения среди известных фуллеренов. За свое открытие - обнаружение углеродных кластеров состава C 60 и C 70 - Р. Керл, Р. Смолли и Г. Крото в 1996 г. были удостоены Нобелевской премии по химии. Ими же и была предложена структура фуллерена C 60 , известная всем любителям футбола.

Как известно, оболочка футбольного мяча скроена из 12 пентагонов и 20 гексагонов. Теоретически возможно 12500 вариантов расположения двойных и ординарных связей. Наиболее стабильный изомер (показанный на рисунке) имеет структуру усеченного икосаэдра, в которой отсутствуют двойные связи в пентагонах. Этот изомер С 60 получил название «Бакминстерфуллерен» в честь известного архитектора по имени R. Buckminster Fuller, создавшего сооружения, куполообразный каркас которых сконструирован из пентагонов и гексагонов. Вскоре была предложена структура для С 70 , напоминающая мяч для игры в регби (с вытянутой формой).

В углеродном каркасе атомы C характеризуются sp 2 -гибридизацией, причем каждый атом углерода связан с тремя соседними атомами. Валентность 4 реализуется за счет p-связей между каждым атомом углерода и одним из его соседей. Естественно, предполагается, что p-связи могут быть делокализованы, как в ароматических соединениях. Такие структуры могут быть построены при n≥20 для любых четных кластеров. В них должно содержаться 12 пентагонов и (n-20)/2 гексагонов. Низший из теоретически возможных фуллеренов C 20 представляет собой не что иное, как додекаэдр - один из пяти правильных многогранников, в котором имеется 12 пятиугольных граней, а шестиугольные грани вовсе отсутствуют. Молекула такой формы имела бы крайне напряженную структуру, и поэтому ее существование энергетически невыгодно.

Таким образом, с точки зрения стабильности, фуллерены могут быть разбиты на два типа. Границу между ними позволяет провести т.н. правило изолированных пентагонов (Isolated Pentagon Rule, IPR). Это правило гласит, что наиболее стабильными являются те фуллерены, в которых ни одна пара пентагонов не имеет смежных ребер. Другими словами, пентагоны не касаются друг друга, и каждый пентагон окружен пятью гексагонами. Если располагать фуллерены в порядке увеличения числа атомов углерода n, то Бакминстерфуллерен - C 60 является первым представителем, удовлетворяющим правилу изолированных пентагонов, а С 70 - вторым. Среди молекул фуллеренов с n>70 всегда есть изомер, подчиняющийся IPR, и число таких изомеров быстро возрастает с ростом числа атомов. Найдено 5 изомеров для С 78 , 24 - для С 84 и 40 - для C 90 . Изомеры, имеющие в своей структуре смежные пентагоны существенно менее стабильны.

Химия фуллеренов

В настоящее время преобладающая часть научных исследований связана с химией фуллеренов. На основе фуллеренов уже синтезировано более 3 тысяч новых соединений. Столь бурное развитие химии фуллеренов связано с особенностями строения этой молекулы и наличием большого числа двойных сопряженных связей на замкнутой углеродной сфере. Комбинация фуллерена с представителями множества известных классов веществ открыла для химиков-синтетиков возможность получения многочисленных производных этого соединения.

В отличие от бензола, где длины C-C связей одинаковы, в фуллеренах можно выделить связи более «двойного» и более «одинарного» характера, и химики часто рассматривают фуллерены как электронодефицитные полиеновые системы, а не как ароматические молекулы. Если обратиться к С 60 , то в нем присутствует два типа связей: более короткие (1.39 Å) связи, пролегающие вдоль общих ребер соседствующих шестиугольных граней, и более длинные (1.45 Å), расположенные по общих ребрам пяти- и шестиугольных граней. При этом ни шестичленные, ни, тем более, пятичленные циклы не обнаруживают ароматических свойств в том смысле, в каком их проявляют бензол или иные плоские сопряженные молекулы, подчиняющиеся правилу Хюккеля. Поэтому обычно более короткие связи в С 60 считают двойными, более длинные же - одинарными. Одна из важнейших особенностей фуллеренов состоит в наличии у них необычно большого числа эквивалентных реакционных центров, что нередко приводит к сложному изомерному составу продуктов реакций с их участием. Вследствие этого большинство химических реакций с фуллеренами не являются селективными, и синтез индивидуальных соединений бывает весьма затруднен.

Среди реакций получения неорганических производных фуллерена наиболее важными являются процессы галогенирования и получения простейших галогенпроизводных, а также реакции гидрирования. Так, эти реакции были одними из первых, проведенных с фуллереном C 60 в 1991 г. Рассмотрим основные типы реакций, ведущие к образоваению данных соединений.

Сразу после открытия фуллеренов большой интерес вызвала возможность их гидрирования с образованием «фуллеранов». Первоначально представлялось возможным присоединение к фуллерену шестидесяти атомов водорода. Впоследствии в теоретических работах было показано, что в молекуле С 60 Н 60 часть атомов водорода должна оказаться внутри фуллереновой сферы, так как шестичленные кольца, подобно молекулам циклогексана, должны принять конформации «кресла» или «ванны». Поэтому известные на настоящий момент молекулы полигидрофуллеренов содержат от 2 до 36 атомов водорода для фуллерена C 60 и от 2 до 8 - для фуллерена C 70 .

При фторировании фуллеренов обнаружен полный набор соединений С 60 F n , где n принимает четные значения вплоть до 60. Фторпроизводные с n от 50 до 60 называются перфторидами и обнаружены среди продуктов фторирования масс-спектрально в чрезвычайно малых концентрациях. Существуют также гиперфториды, то есть продукты состава C 60 F n , n>60, где углеродный каркас фуллерена оказывается частично разрушенным. Предполагается, что подобное имеет место и в перфторидах. Вопросы синтеза фторидов фуллеренов различного состава являются самостоятельной интереснейшей проблемой, изучением которой наиболее активно занимаются в химического факультета МГУ им. М.В. Ломоносова.

Активное изучение процессов хлорирования фуллеренов в различных условиях началось уже в 1991 году. В первых работах авторы пытались получить хлориды С 60 путем взаимодействия хлора и фуллерена в различных растворителях. К настоящему же времени выделено и охарактеризовано несколько индивидуальных хлоридов фуллеренов C 60 и C 70 , полученных путем применения различных хлорирующих агентов.

Первые попытки бромирования фуллерена были предприняты уже в 1991 году. Фуллерен С 60 , помещенный в чистый бром при температуре 20 и 50 O С, увеличивал массу на величину, соответствующую присоединению 2-4 атомов брома на одну молекулу фуллерена. Дальнейшие исследования бромирования показали, что при взаимодействии фуллерена С 60 с молекулярным бромом в течение нескольких дней получается ярко-оранжевое вещество, состав которого, как было определено, методом элементного анализа, был С 60 Br 28 . Впоследствии было синтезировано несколько бромпроизводных фуллеренов, отличающихся широким набором значений числа атомов брома в молекуле. Для многих из них характерно образование клатратов с включением молекул свободного брома.

Интерес к перфторалкилпроизводным, в частности трифторметилированным производным фуллеренов связан, в первую очередь, с ожидаемой кинетической стабильностью этих соединений по сравнению со склонными к реакциям нуклеофильного S N 2’-замещения галогенпроизводными фуллеренов. Кроме того, перфторалкилфуллерены могут представлять интерес как соединения с высоким сродством к электрону, обусловленным даже более сильными, чем у атомов фтора, акцепторными свойствами перфторалкильных групп. К настоящему времени число выделенных и охарактеризованных индивидуальных соединений состава C 60/70 (CF 3) n , n=2-20 превышает 30, причем интенсивно ведутся работы по модификации фуллереновой сферы многими другими фторсодержащими группами - CF 2 , C 2 F 5 , C 3 F 7 .

Создание же биологически активных производных фуллерена, которые могли бы найти применение в биологии и медицине, связано с приданием молекуле фуллерена гидрофильных свойств. Одним из методов синтеза гидрофильных производных фуллерена является введение гидроксильных групп и образования фуллеренолов или фуллеролов, содержащих до 26 групп ОН, а также, вероятно, кислородные мостики, аналогичные наблюдаемым в случае оксидов. Такие соединения хорошо растворимы в воде и могут быть использованы для синтеза новых производных фуллерена.

Что же касается оксидов фуллеренов, то соединения С 60 О и С 70 О присутствуют всегда в исходных смесях фуллеренов в экстракте в небольших количествах. Вероятно, кислород присутствует в камере при электродуговом разряде и часть фуллеренов окисляется. Оксиды фуллерена хорошо разделяются на колонках с различными адсорбентами, что позволяет контролировать чистоту образцов фуллеренов, и отсутствие или присутствие оксидов в них. Однако низкая стабильность оксидов фуллеренов препятствуют их систематическому изучению.

Что можно отметить относительно органической химии фуллеренов, так это то, что, будучи электронодефицитным полиеном, фуллерен С 60 проявляет склонность к реакциям радикального, нуклеофильного и циклоприсоединения. Особенно перспективными в плане функционализации фуллереновой сферы являются разнообразные реакции циклоприсоединения. В силу своей электронной природы С 60 способен принимать участие в реакциях -циклоприсоединения, причем наиболее характерными являются случаи, когда n=1, 2, 3 и 4.

Основной проблемой, решаемой химиками-синтетиками, работающими в области синтеза производных фуллеренов, и по сей день остается селективность проводимых реакций. Особенности стереохимии присоединения к фуллеренам состоят в огромном числе теоретически возможных изомеров. Так, например, у соединения C 60 X 2 их 23, у С 60 X 4 уже 4368, среди них 8 - продукты присоединения по двум двойным связям. 29 изомеров С 60 X 4 не будут, однако, иметь химического смысла, обладая триплетным основным состоянием, возникающим в связи с наличием sp2-гибридизованного атома углерода в окружении трех sp 3 -гибридизованных атомов, образующих С-Х связи. Максимальное число теоретически возможных изомеров без учета мультиплетности основного состояния будет наблюдаться в случае С 60 X 30 и составит 985538239868524 (1294362 из них - продукты присоединения по 15 двойным связям), тогда как число несинглетных изомеров той же природы, что и в приведенном выше примере, не поддается простому учету, но из общих соображений должно постоянно увеличивать с ростом числа присоединенных групп. В любом случае, число теоретически допустимых изомеров в большинстве случаев огромно, при переходе же к менее симметричным С 70 и высшим фуллеренам оно дополнительно возрастает в разы или на порядки.

На самом же деле, многочисленные данные квантово-химических расчетов показывают, что большинство реакций галогенирования и гидрирования фуллеренов протекают с образованием если и не наиболее стабильных изомеров, то, по крайней мере, незначительно отличающихся от них по энергии. Наибольшие расхождения наблюдаются в случае низших гидридов фуллеренов, изомерный состав которых, как было показано выше, может даже слегка зависеть от пути синтеза. Но при этом стабильность образующихся изомеров все равно оказывается крайне близкой. Изучение этих закономерностей образования производных фуллеренов представляет собой интереснейшую задачу, решение которой приводит к новым достижениям в области химии фуллеренов и их производных.

В 1985 году была открыта молекула, состоящая из 60 атомов углерода, устроенная наподобие футбольного мяча, – фуллерен, названный так в честь инженера Ричарда Фуллера, прославившегося конструкциями именно такой формы. Помимо своей удивительно симметричной формы, эта молекула, являющаяся третьей (после алмаза и графита) аллотропной формой углерода, оказалась чем-то вроде философского камня алхимиков .

До последнего времени она не перестает удивлять ученых своей крайне низкой токсичностью (особенно по сравнению с чем-то похоже устроенными нанотрубками ) и другими удивительными свойствами . Механизмы взаимодействия фуллеренов с клетками пока не ясны, но результат поистине можно назвать волшебством .

Вот далеко не полный перечень тех свойств, которые заинтересовали медиков и биологов. Фуллерен и его производные можно использовать:

  • для защиты организма от радиации и ультрафиолетового излучения ;
  • для защиты от вирусов и бактерий ;
  • для защиты от аллергии . Так, в экспериментах in vivo введение производных фуллерена ингибирует анафилаксию у мышей, и при этом токсического эффекта не наблюдается;
  • как вещество, стимулирующее иммунитет ;
  • как мощный антиоксидант , поскольку он является активным акцептором радикалов. Антиоксидантная активность фуллерена сопоставима с действием антиоксидантов класса SkQ («ионов Скулачева») и в 100–1000 раз превышает действие обычных антиоксидантов, таких как витамин Е, бутилгидрокситолуол, β-каротин;
  • как лекарственные препараты для борьбы с раковыми заболеваниями ;
  • для ингибирования ангиогенеза ;
  • для защиты мозга от алкоголя ;
  • для стимуляции роста нервов;
  • для стимуляции процессов регенерации кожи. Так, фуллерен является важным компонентом косметических омолаживающих средств GRS и CEFINE;
  • для стимуляции роста волос ;
  • как лекарство с антиамилоидным действием .

Помимо этого, фуллерен может использоваться для доставки в клетку различных лекарственных веществ и невирусной доставки в клеточное ядро генетических векторов .

Казалось бы, куда еще расширять этот список, но недавно он пополнился еще одним, пожалуй, самым удивительным и непонятным, качеством фуллерена С60. При исследовании токсичности фуллерена С60, растворенного в оливковом масле, французские исследователи выяснили, что крысы, регулярно получающие раствор фуллерена С60, живут дольше, чем те, которым давали просто оливковое масло или обычную диету . (Краткий пересказ можно прочитать в статье «Оливковое масло с фуллеренами – эликсир молодости?» – ВМ.)

Растворение в масле резко повышает эффективность фуллерена С60, так как его большие агрегаты (16 и более молекул) не способны проникнуть внутрь клеток .

При этом продолжительность жизни увеличивалась не на какие-нибудь 20-30%, как в опытах с лучшими из «лекарств от старости» (такими как ресвератрол или рапамицин), а не менее чем в два раза ! Половина животных, получавших фуллерен, жили до 60 месяцев (самая старая крыса дожила до 5,5 лет). При этом в контрольной группе (с обычной диетой) продолжительность жизни 50% животных составляла 30 месяцев, а самые старые дожили лишь до 37 месяцев. Животные, получавшие оливковое масло без фуллерена, жили немного больше – 50% из них доживали до 40 месяцев, а самая старая крыса дожила до 58 месяцев.

Диаграмма выживаемости крыс, получавших: обычную диету (голубая линия), вдобавок к диете оливковое масло (красная) и оливковое масло с растворенным в нем фуллереном С60 (черная линия). Рисунок из .

Животворное действие фуллерена С60 авторы статьи приписывают его антиоксидантным свойствам. Однако не исключено, что оно может быть связано со способностью фуллерена С60 взаимодействовать с витамином А . Известно, что ретиноиды (к которым относится и витамин А) играют важную роль в экспрессии ключевых генов иммунной системы, и что локальный синтез ретиноидов, по всей видимости, играет ключевую роль в регуляции эмбриогенеза и регенерации .

К сожалению, эти опыты были поставлены на небольших группах животных и потому требуют тщательной проверки. Учитывая тот факт, что очищенный фуллерен С60, производимый в России, стоит всего около 1800 рублей за грамм, повторить эти опыты, уточнить дозировки и продолжительность «лечения» не так уж и сложно. Сложнее другое. Будет ли эта «терапия старости» так же эффективна для человека? Ведь люди – не крысы, и есть десятки примеров того, что препарат, очень эффективно действующий в экспериментах на мышах, оказывался совершенно бесполезным (если не вредным!), когда испытания переходили в клинику. Что ж – время покажет. Интересно было бы также сопоставить активность фуллерена С60 по продлению жизни с его многочисленными водорастворимыми аналогами, синтезированными в России в самое последнее время.

Написано по материалам оригинальной статьи .

Литература

  1. А.В. Елецкий, Б.М. Смирнов. (1993). Фуллерены. УФН 163 (№ 2), 33–60;
  2. Mori T. et al. (2006). Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225, 48–54;
  3. Szwarc H, Moussa F. (2011). Toxicity of 60fullerene: confusion in the scientific literature. J. Nanosci. Lett. 1, 61–62;
  4. биомолекула: «Невидимая граница: где сталкиваются „нано“ и „био“»;
  5. Marega R., Giust D., Kremer A., Bonifazi D. (2012). Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes (eds N. Martin and J.-F. Nierengarten), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany;
  6. Пиотровский Л.Б. (2010). Наномедицина как часть нанотехнологий. Вестник РАМН 3, 41–46;
  7. Theriot C.A., Casey R.C., Moore V.C., Mitchell L., Reynolds J.O., Burgoyne M., et al. (2010). Dendrofullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Radiat. Environ. Biophys. 49, 437–445;
  8. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo. Free Radic. Biol. Med. 47, 786–793;
  9. Mashino T., Shimotohno K., Ikegami N., et al. (2005). Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 15, 1107–1109;
  10. Lu Z.S., Dai T.H., Huang L.Y., et al. (2010). Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5, 1525–1533;
  11. John J.R., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W., et al. (2007). Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179, 665–672;
  12. Xu Y.Y., Zhu J.D., Xiang K., Li Y.K., Sun R.H., Ma J., et al. (2011). Synthesis and immunomodulatory activity of 60fullerene-tuftsin conjugates. Biomaterials 32, 9940–9949;
  13. Gharbi N., Pressac M., Hadchouel M. et al. (2005). Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 5, 2578–2585;
  14. Chen Z., Ma L., Liu Y., Chen C. (2012). Applications of Functionalized Fullerenes in Tumor Theranostics. Theranostics 2, 238–250;
  15. Jiao F., Liu Y., Qu Y. et al. (2010). Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 48, 2231–2243;
  16. Meng H., Xing G.M., Sun B.Y., Zhao F., Lei H., Li W., et al. (2010). Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 4, 2773–2783;
  17. Tykhomyrov A.A., Nedzvetsky V.S., Klochkov V.K., Andrievsky G.V. (2008). Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology 246, 158–165;
  18. Григорьев В.В., Петрова Л.Н., Иванова Т.А., с соавт. и Бачурин С.О. (2011). Исследование нейропротекторного действия гибридных структур на основе фуллерена С60. Изв. РАН серия Биологическая 2, 163–170;
  19. Zhou Z.G., Lenk R., Dellinger A., MacFarland D., Kumar K., Wilson S.R., et al. (2009). Fullerene nanomaterials potentiate hair growth. Nanomed. Nanotechnol. Biol. Med. 5, 202–207;
  20. Bobylev A.G., Kornev A.B., Bobyleva L.G., Shpagina M.D., Fadeeva I.S., Fadeev R.S., et al. (2011). Fullerenolates: metallated polyhydroxylated fullerenes with potent antiamyloid activity. Org. Biomol. Chem. 9, 5714–5719;
  21. биомолекула: «Наномедицина будущего: трансдермальная доставка с использованием наночастиц»;
  22. Montellano A., Da Ros T., Bianco A., Prato M. (2011). Fullerene C(60) as a multifunctional system for drug and gene delivery. Nanoscale 3, 4035–4041;
  23. Кузнецова С.А., Орецкая Т.С. (2010). Нанотранспортные системы адресной доставки нуклеиновых кислот в клетки. Российские нанотехнологии 5 (№ 9–10), 40–52;
  24. Baati T., Bourasset F., Gharb N., et al. (2012) The prolongation of the lifespan of rats by repeated oral administration of 60fullerene. Biomaterials 33, 4936–4946;
  25. Пиотровский Л.Б., Еропкин М.Ю., Еропкина Е.М., Думпис М.А., Киселев О.И. (2007). Механизмы биологического действия фуллеренов – зависимость от агрегатного состояния. Психофармакология и биологическая наркология 7 (№ 2), 1548–1554;
  26. Moussa F., Roux S., Pressac M., Genin E., Hadchouel M., Trivin F., et al. (1998). In vivo reaction between 60fullerene and vitamin A in mouse liver. New J. Chem. 22, 989–992;
  27. Linney E., Donerly S., Mackey L., Dobbs-McAuliffe B. (2001). The negative side of retinoic acid receptors. Neurotoxicol Teratol. 33, 631–640;
  28. Gudas L.J. (2012). Emerging Roles for Retinoids in Regeneration and Differentiation in Normal and Disease States. Biochim Biophys Acta 1821, 213–221.

Портал «Вечная молодость»

Фуллерен – молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства.

Другие формы углерода: графен, карбин, алмаз, фуллерен, углеродные нанотрубки, “вискерсы” .


Описание и структура фуллерена:

Фуллерен, бакибол, или букибол - молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода .

Фуллерены названы таким образом по имени инженера и архитектора Ричарда Бакминстера Фуллера, который разработал и построил пространственную конструкцию «геодезического купола», представляющую собой полусферу, собранную из тетраэдров. Данная конструкция принесла Фуллеру международное признание и известность. Сегодня по его разработкам разрабатываются и строятся купольные дома . Фуллерен по своей структуре и форме напоминает указанные конструкции Ричарда Бакминстера Фуллера.

Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства. В соединении с другими веществами они позволяют получить материалы с принципиально новыми свойствами.

В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч (как идеальная форма, крайне редко встречающаяся в природе).

Следующим по распространённости является фуллерен C 70 , отличающийся от фуллерена C 60 вставкой пояса из 10 атомов углерода в экваториальную область C 60 , в результате чего молекула фуллерена C 60 является вытянутой и напоминает своей формой мяч для игры в регби.

Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400 и более), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить C n , где n = 74, 76, 78, 80, 82 и 84.

Связь между вершинами, ребрами и гранями фуллерена может быть выражена математической формулой согласно теореме Эйлера для многогранников:

В – Р + Г = 2,

где В – число вершин выпуклого многогранника, Р – число его рёбер и Г – число граней.

Необходимым условием существования выпуклого многогранника согласно теореме Эйлера (и соответственно существования фуллерена с определенной структурой и формой) является наличие ровно 12 пятиугольных граней и В/2 – 10 граней.

Возможность существования фуллерена была предсказана японскими учеными в 1971 году, теоретически обоснование было сделано советскими учеными в 1973 году. Впервые фуллерен был синтезирован в 1985 г. в США.

Практически весь фуллерен получают искусственным путем. В природе он содержится в очень малых количествах. Он образуются при горении природного газа и разряде молнии, а также содержится в очень малых количествах в шунгитах, фульгуритах, метеоритах и донных отложениях, возраст которых достигает 65 миллионов лет.


Соединения фуллерена:

Фуллерен легко вступает в соединения с другими химическими элементами. В настоящее время на основе фуллеренов уже синтезировано более 3 тысяч новых и производных соединений.

Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными, если снаружи - экзоэдральными.


Преимущества и свойства фуллерена:

– материалы с применением фуллеренов обладают повышенной прочностью, износостойкостью, термо – и хемостабильностью и уменьшенной истираемостью,

– механические свойства фуллеренов позволяют использовать их в качестве высокоэффективной антифрикационной твердой смазки. На поверхностях контртел они образуют защитную фуллерено-полимерную плёнку толщиной десятки и сотни нанометров, которая защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, увеличивает термостабильность смазок до 400-500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел,

– фуллерены способны полимеризоваться и образовывать тонкие пленки ,

– резкое снижение прозрачности раствора фуллеренов при превышении интенсивности оптического излучения некоторого критического значения за счет нелинейных оптических свойств,

– возможность использования фуллеренов в качестве основы для нелинейных оптических затворов, применяемых для защиты оптических устройств от интенсивного оптического облучения,

– фуллерены имеют способность проявлять свойства антиоксиданта или окислителя. В качестве антиоксидантов они превосходят действие всех известных антиоксидантов в 100 – 1000 раз. Были проведены опыты на крысах, которых кормили фуллеренами в оливковом масле. При этом крысы жили вдвое дольше обычных, и, к тому же, демонстрировали повышенную устойчивость к действию токсических факторов,

– является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников,

– фуллерены С60, выступая в качестве лиганда, взаимодействуют с щелочными и некоторыми другими металлами. При этом образуются комплексные соединения состава Ме 3 С60, обладающие свойствами сверхпроводников.

Свойства молекулы фуллерена*:

* применительно к фуллерену С60.

Получение фуллеренов:

Основными способами получения фуллеренов считаются:

– сжигание графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях,

– сжигания углеводородов в пламени.

Необходимо отметить, что особую сложность представляет не только само по себе получение фуллеренов (их выход в виде углеродной сажи крайне низкий), но и последующее выделение, очистка и разделение фуллеренов по классам из углеродной сажи.