Kā aritmētiskajā progresijā atrast skaitli n. Aritmētiskā progresija ir skaitļu secība. Dotā termina vērtības aprēķināšanas piemērs


Piemēram, secība \(2\); \(5\); \(8\); \(11\); \(14\)... ir aritmētiskā progresija, jo katrs nākamais elements no iepriekšējā atšķiras par trīs (var iegūt no iepriekšējā, pievienojot trīs):

Šajā progresijā starpība \(d\) ir pozitīva (vienāda ar \(3\)), un tāpēc katrs nākamais termins ir lielāks par iepriekšējo. Šādas progresijas sauc pieaug.

Tomēr \(d\) var būt arī negatīvs skaitlis. Piemēram, aritmētiskā progresijā \(16\); \(10\); \(4\); \(-2\); \(-8\)... progresijas starpība \(d\) ir vienāda ar mīnus seši.

Un šajā gadījumā katrs nākamais elements būs mazāks nekā iepriekšējais. Šīs progresijas sauc samazinās.

Aritmētiskās progresijas apzīmējums

Progresiju norāda ar mazu latīņu burtu.

Tiek saukti skaitļi, kas veido progresiju biedriem(vai elementi).

Tie ir apzīmēti ar vienu un to pašu burtu kā aritmētiskā progresija, bet ar skaitlisko indeksu, kas vienāds ar elementa numuru secībā.

Piemēram, aritmētiskā progresija \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) sastāv no elementiem \(a_1=2\); \(a_2=5\); \(a_3=8\) un tā tālāk.

Citiem vārdiem sakot, progresijai \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Aritmētiskās progresijas uzdevumu risināšana

Principā iepriekš sniegtā informācija jau ir pietiekama, lai atrisinātu gandrīz jebkuru aritmētiskās progresijas problēmu (ieskaitot tos, kas tiek piedāvāti OGE).

Piemērs (OGE). Aritmētisko progresiju nosaka nosacījumi \(b_1=7; d=4\). Atrodiet \(b_5\).
Risinājums:

Atbilde: \(b_5=23\)

Piemērs (OGE). Ir doti pirmie trīs aritmētiskās progresijas locekļi: \(62; 49; 36…\) Atrodiet šīs progresijas pirmā negatīvā vārda vērtību.
Risinājums:

Mums ir doti pirmie secības elementi un zinām, ka tā ir aritmētiskā progresija. Tas ir, katrs elements atšķiras no kaimiņa ar tādu pašu numuru. Noskaidrosim, kurš, no nākamā elementa atņemot iepriekšējo: \(d=49-62=-13\).

Tagad mēs varam atjaunot savu progresu uz mums nepieciešamo (pirmo negatīvo) elementu.

Gatavs. Jūs varat uzrakstīt atbildi.

Atbilde: \(-3\)

Piemērs (OGE). Doti vairāki secīgi aritmētiskās progresijas elementi: \(…5; x; 10; 12,5...\) Atrodiet elementa vērtību, kas apzīmēta ar burtu \(x\).
Risinājums:


Lai atrastu \(x\), mums jāzina, cik ļoti nākamais elements atšķiras no iepriekšējā, citiem vārdiem sakot, progresijas atšķirība. Atradīsim to no diviem zināmiem blakus elementiem: \(d=12,5-10=2,5\).

Un tagad mēs varam viegli atrast to, ko meklējam: \(x=5+2.5=7.5\).


Gatavs. Jūs varat uzrakstīt atbildi.

Atbilde: \(7,5\).

Piemērs (OGE). Aritmētisko progresiju nosaka šādi nosacījumi: \(a_1=-11\); \(a_(n+1)=a_n+5\) Atrodiet šīs progresijas pirmo sešu vārdu summu.
Risinājums:

Mums jāatrod progresa pirmo sešu terminu summa. Bet mēs nezinām to nozīmi; mums ir dots tikai pirmais elements. Tāpēc vispirms mēs aprēķinām vērtības pa vienam, izmantojot to, kas mums ir dots:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Un, aprēķinot sešus mums nepieciešamos elementus, mēs atrodam to summu.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Nepieciešamā summa ir atrasta.

Atbilde: \(S_6=9\).

Piemērs (OGE). Aritmētiskajā progresijā \(a_(12)=23\); \(a_(16)=51\). Atrodiet šīs progresijas atšķirību.
Risinājums:

Atbilde: \(d=7\).

Svarīgas aritmētiskās progresijas formulas

Kā redzat, daudzas aritmētiskās progresijas problēmas var atrisināt, vienkārši saprotot galveno - ka aritmētiskā progresija ir skaitļu ķēde, un katrs nākamais elements šajā ķēdē tiek iegūts, pievienojot to pašu skaitli iepriekšējam ( progresijas atšķirība).

Tomēr dažreiz ir situācijas, kad izlemt “uz priekšu” ir ļoti neērti. Piemēram, iedomājieties, ka pašā pirmajā piemērā mums jāatrod nevis piektais elements \(b_5\), bet trīs simti astoņdesmit sestais \(b_(386)\). Vai mums vajadzētu pievienot četras \(385\) reizes? Vai arī iedomājieties, ka priekšpēdējā piemērā jums jāatrod pirmo septiņdesmit trīs elementu summa. Tev būs apnicis skaitīt...

Tāpēc šādos gadījumos viņi nerisina lietas “uz priekšu”, bet izmanto īpašas formulas, kas iegūtas aritmētiskajai progresijai. Un galvenās ir progresijas n-tā vārda formula un \(n\) pirmo terminu summas formula.

\(n\)-tā termina formula: \(a_n=a_1+(n-1)d\), kur \(a_1\) ir progresijas pirmais loceklis;
\(n\) – vajadzīgā elementa numurs;
\(a_n\) – progresijas termins ar skaitli \(n\).


Šī formula ļauj ātri atrast pat trīssimtdaļu vai miljono elementu, zinot tikai pirmo un progresijas starpību.

Piemērs. Aritmētisko progresiju nosaka nosacījumi: \(b_1=-159\); \(d=8,2\). Atrodiet \(b_(246)\).
Risinājums:

Atbilde: \(b_(246)=1850\).

Pirmo n vārdu summas formula: \(S_n=\frac(a_1+a_n)(2) \cdot n\), kur



\(a_n\) – pēdējais summētais termins;


Piemērs (OGE). Aritmētisko progresiju nosaka nosacījumi \(a_n=3,4n-0,6\). Atrodiet šīs progresijas pirmo \(25\) vārdu summu.
Risinājums:

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25\)

Lai aprēķinātu pirmo divdesmit piecu terminu summu, mums jāzina pirmā un divdesmit piektā termina vērtība.
Mūsu progresiju uzrāda n-tā vārda formula atkarībā no tā skaita (sīkāku informāciju sk.). Aprēķināsim pirmo elementu, aizstājot \(n\) ar vienu.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Tagad atradīsim divdesmit piekto terminu, aizstājot divdesmit piecus \(n\) vietā.

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Nu, tagad mēs varam viegli aprēķināt nepieciešamo summu.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

Atbilde ir gatava.

Atbilde: \(S_(25)=1090\).

Pirmo terminu summai \(n\) varat iegūt citu formulu: jums vienkārši nepieciešams \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) \(a_n\) vietā aizstājiet formulu \(a_n=a_1+(n-1)d\). Mēs iegūstam:

Pirmo n vārdu summas formula: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), kur

\(S_n\) – nepieciešamā \(n\) pirmo elementu summa;
\(a_1\) – pirmais summētais termins;
\(d\) – progresijas atšķirība;
\(n\) – elementu skaits kopā.

Piemērs. Atrodiet aritmētiskās progresijas pirmo \(33\)-ex vārdu summu: \(17\); \(15,5\); \(14\)…
Risinājums:

Atbilde: \(S_(33)=-231\).

Sarežģītākas aritmētiskās progresijas problēmas

Tagad jums ir visa nepieciešamā informācija, lai atrisinātu gandrīz jebkuru aritmētiskās progresijas uzdevumu. Pabeigsim tēmu, apsverot problēmas, kurās ne tikai jāpielieto formulas, bet arī nedaudz jāpadomā (matemātikā tas var noderēt ☺)

Piemērs (OGE). Atrodiet visu progresijas negatīvo vārdu summu: \(-19,3\); \(-19\); \(-18,7\)…
Risinājums:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Uzdevums ir ļoti līdzīgs iepriekšējam. Mēs sākam risināt to pašu: vispirms atrodam \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Tagad es gribētu summas formulā aizstāt \(d\)... un šeit parādās neliela nianse - mēs nezinām \(n\). Citiem vārdiem sakot, mēs nezinām, cik vienumu būs jāpievieno. Kā to noskaidrot? Padomāsim. Mēs pārtrauksim pievienot elementus, kad sasniegsim pirmo pozitīvo elementu. Tas ir, jums ir jānoskaidro šī elementa numurs. Kā? Pierakstīsim formulu jebkura aritmētiskās progresijas elementa aprēķināšanai: \(a_n=a_1+(n-1)d\) mūsu gadījumā.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Mums ir nepieciešams \(a_n\), lai tas būtu lielāks par nulli. Noskaidrosim, kad \(n\) tas notiks.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Mēs sadalām abas nevienādības puses ar \(0,3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

Pārskaitām mīnus viens, neaizmirstot nomainīt zīmes

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Parēķināsim...

\(n>65 333…\)

...un izrādās, ka pirmajam pozitīvajam elementam būs skaitlis \(66\). Attiecīgi pēdējam negatīvajam ir \(n=65\). Katram gadījumam, pārbaudīsim šo.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Tāpēc mums jāpievieno pirmie \(65\) elementi.

\(S_(65)=\) \(\frac(2 \cdot (-19.3)+(65-1)0.3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Atbilde ir gatava.

Atbilde: \(S_(65)=-630,5\).

Piemērs (OGE). Aritmētisko progresiju nosaka nosacījumi: \(a_1=-33\); \(a_(n+1)=a_n+4\). Atrodiet summu no \(26\) līdz elementam \(42\) ieskaitot.
Risinājums:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

Šajā uzdevumā jāatrod arī elementu summa, taču sākot nevis no pirmā, bet gan no \(26\)th. Šādam gadījumam mums nav formulas. Kā izlemt?
Tas ir vienkārši — lai iegūtu summu no \(26\) līdz \(42\), vispirms jāatrod summa no \(1\) līdz \(42\) un pēc tam jāatņem. no tā summa no pirmās līdz \(25\)th (skat. attēlu).


Mūsu progresijai \(a_1=-33\) un starpībai \(d=4\) (galu galā tie ir četri, ko mēs pievienojam iepriekšējam elementam, lai atrastu nākamo). Zinot to, mēs atrodam pirmo \(42\)-y elementu summu.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Tagad pirmo \(25\) elementu summa.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Un visbeidzot mēs aprēķinām atbildi.

\(S=S_(42)-S_(25)=2058-375=1683\)

Atbilde: \(S=1683\).

Aritmētiskajai progresijai ir vēl vairākas formulas, kuras mēs šajā rakstā neņēmām vērā to zemās praktiskās lietderības dēļ. Tomēr jūs varat tos viegli atrast.

Uzmanību!
Ir papildu
materiāli speciālajā 555. sadaļā.
Tiem, kas ir ļoti "ne ļoti..."
Un tiem, kas “ļoti…”)

Aritmētiskā progresija ir skaitļu virkne, kurā katrs skaitlis ir par tādu pašu summu lielāks (vai mazāks) par iepriekšējo.

Šī tēma bieži šķiet sarežģīta un nesaprotama. Burtu indeksi n-tais termiņš progresijas, progresijas atšķirības - tas viss ir kaut kā mulsinoši, jā... Izdomāsim aritmētiskās progresijas nozīmi un viss uzreiz kļūs labāk.)

Aritmētiskās progresijas jēdziens.

Aritmētiskā progresija ir ļoti vienkāršs un skaidrs jēdziens. Vai jums ir kādas šaubas? Velti.) Skatieties paši.

Es uzrakstīšu nepabeigtu skaitļu sēriju:

1, 2, 3, 4, 5, ...

Vai varat pagarināt šo sēriju? Kādi skaitļi būs nākamie pēc pieciem? Visi... uh..., īsi sakot, visi sapratīs, ka nākamie nāks skaitļi 6, 7, 8, 9 utt.

Sarežģīsim uzdevumu. Es dodu jums nepabeigtu skaitļu sēriju:

2, 5, 8, 11, 14, ...

Jūs varēsiet noķert modeli, paplašināt sēriju un nosaukt septītais rindas numurs?

Ja sapratāt, ka šis skaitlis ir 20, apsveicam! Jūs ne tikai jutāt aritmētiskās progresijas galvenie punkti, bet arī veiksmīgi izmantoja tos biznesā! Ja neesat to sapratis, lasiet tālāk.

Tagad pārtulkosim galvenos punktus no sajūtām matemātikā.)

Pirmais galvenais punkts.

Aritmētiskā progresija attiecas uz skaitļu sērijām. Sākumā tas ir mulsinoši. Mēs esam pieraduši risināt vienādojumus, zīmēt grafikus un visu to... Bet šeit mēs pagarinām sēriju, atrodam sērijas numuru...

Viss kārtībā. Vienkārši progresijas ir pirmā iepazīšanās ar jaunu matemātikas nozari. Sadaļa saucas "Sērija", un tā darbojas īpaši ar skaitļu un izteiksmju sērijām. Pierod pie tā.)

Otrais galvenais punkts.

Aritmētiskajā progresijā jebkurš skaitlis atšķiras no iepriekšējā par tādu pašu summu.

Pirmajā piemērā šī atšķirība ir viena. Neatkarīgi no tā, kādu skaitli paņemat, tas ir par vienu vairāk nekā iepriekšējais. Otrajā - trīs. Jebkurš skaitlis ir par trīs vairāk nekā iepriekšējais. Faktiski tieši šis brīdis dod mums iespēju aptvert modeli un aprēķināt turpmākos skaitļus.

Trešais galvenais punkts.

Šis brīdis nav uzkrītošs, jā... Bet tas ir ļoti, ļoti svarīgi. Šeit tas ir: katrs progresijas numurs stāv savā vietā. Ir pirmais numurs, ir septītais, ir četrdesmit piektais utt. Ja tos nejauši sajaucat, raksts pazudīs. Pazudīs arī aritmētiskā progresija. Tas, kas palicis, ir tikai skaitļu virkne.

Tā ir visa būtība.

Protams, iekšā jauna tēma parādās jauni termini un apzīmējumi. Jums tie ir jāzina. Pretējā gadījumā jūs nesapratīsit uzdevumu. Piemēram, jums būs jāizlemj, piemēram:

Pierakstiet aritmētiskās progresijas (a n) pirmos sešus vārdus, ja a 2 = 5, d = -2,5.

Iedvesmojošs?) Burti, daži rādītāji... Un uzdevums, starp citu, nevarētu būt vienkāršāks. Jums vienkārši jāsaprot terminu un apzīmējumu nozīme. Tagad mēs apgūsim šo lietu un atgriezīsimies pie uzdevuma.

Noteikumi un apzīmējumi.

Aritmētiskā progresija ir skaitļu virkne, kurā katrs skaitlis atšķiras no iepriekšējā par tādu pašu summu.

Šo daudzumu sauc . Apskatīsim šo koncepciju sīkāk.

Aritmētiskās progresijas atšķirība.

Aritmētiskās progresijas atšķirība ir summa, par kādu jebkurš progresijas skaitlis vairāk iepriekšējā.

Viens svarīgs punkts. Lūdzu, pievērsiet uzmanību vārdam "vairāk". Matemātiski tas nozīmē, ka katrs progresijas skaitlis ir pievienojot aritmētiskās progresijas atšķirība līdz iepriekšējam skaitlim.

Lai aprēķinātu, teiksim otrais sērijas numuriem, jums ir nepieciešams vispirms numuru pievienotšī aritmētiskās progresijas atšķirība. Aprēķinam piektais- atšķirība ir nepieciešama pievienot Uz ceturtais, nu utt.

Aritmētiskās progresijas atšķirība Var būt pozitīvs, tad katrs sērijas numurs izrādīsies īsts vairāk nekā iepriekšējā.Šo progresēšanu sauc pieaug. Piemēram:

8; 13; 18; 23; 28; .....

Šeit tiek iegūts katrs skaitlis pievienojot pozitīvs skaitlis, +5 pret iepriekšējo.

Atšķirība var būt negatīvs, tad katrs sērijas numurs būs mazāk nekā iepriekšējā.Šo progresu sauc (jūs neticēsit!) samazinās.

Piemēram:

8; 3; -2; -7; -12; .....

Šeit tiek iegūts arī katrs skaitlis pievienojot uz iepriekšējo, bet jau negatīvs skaitlis, -5.

Starp citu, strādājot ar progresēšanu, ir ļoti noderīgi uzreiz noteikt tās būtību – vai tā palielinās vai samazinās. Tas ļoti palīdz orientēties lēmumā, pamanīt savas kļūdas un izlabot tās, pirms nav par vēlu.

Aritmētiskās progresijas atšķirība parasti apzīmē ar burtu d.

Kā atrast d? Ļoti vienkārši. Ir nepieciešams atņemt no jebkura skaitļa sērijā iepriekšējā numuru. Atņemt. Starp citu, atņemšanas rezultātu sauc par "starpību".)

Definēsim, piemēram, d aritmētiskās progresijas palielināšanai:

2, 5, 8, 11, 14, ...

Mēs ņemam jebkuru skaitli no sērijas, ko vēlamies, piemēram, 11. Mēs no tā atņemam iepriekšējais numurs tie. 8:

Šī ir pareizā atbilde. Šai aritmētiskajai progresijai atšķirība ir trīs.

Jūs varat to ņemt jebkurš progresijas numurs, jo konkrētai progresijai d-vienmēr tas pats. Vismaz kaut kur rindas sākumā, vismaz vidū, vismaz jebkur. Jūs nevarat ņemt tikai pašu pirmo numuru. Vienkārši tāpēc, ka pats pirmais numurs neviena iepriekšējā.)

Starp citu, to zinot d=3, atrast šīs progresijas septīto skaitli ir ļoti vienkārši. Piektajam skaitlim pievienosim 3 - iegūstam sesto, būs 17. Sestajam skaitlim pieskaitīsim trīs, iegūstam septīto skaitli - divdesmit.

Definēsim d dilstošai aritmētiskajai progresijai:

8; 3; -2; -7; -12; .....

Atgādinu, ka neatkarīgi no pazīmēm, lai noteiktu d nepieciešams no jebkura numura atņem iepriekšējo. Izvēlieties jebkuru progresijas skaitli, piemēram, -7. Viņa iepriekšējais numurs ir -2. Pēc tam:

d = -7 - (-2) = -7 + 2 = -5

Aritmētiskās progresijas starpība var būt jebkurš skaitlis: vesels skaitlis, daļskaitlis, iracionāls, jebkurš skaitlis.

Citi termini un apzīmējumi.

Katrs sērijas numurs tiek izsaukts aritmētiskās progresijas dalībnieks.

Katrs progresijas dalībnieks ir savs numurs. Skaitļi ir stingri kārtībā, bez trikiem. Pirmā, otrā, trešā, ceturtā utt. Piemēram, progresijā 2, 5, 8, 11, 14, ... divi ir pirmais vārds, pieci ir otrais, vienpadsmit ir ceturtais, labi, jūs saprotat...) Lūdzu, skaidri saprotiet - paši skaitļi var būt pilnīgi jebkas, vesels, daļējs, negatīvs, jebkas, bet skaitļu numerācija- stingri kārtībā!

Kā ierakstīt progresu vispārējs skats? Nav jautājumu! Katrs sērijas numurs ir rakstīts kā burts. Lai apzīmētu aritmētisko progresiju, parasti izmanto burtu a. Dalībnieka numurs ir norādīts ar indeksu apakšējā labajā stūrī. Mēs rakstām terminus, atdalot tos ar komatiem (vai semikolu), šādi:

1, 2, 3, 4, 5, ......

a 1- šis ir pirmais numurs, a 3- trešais utt. Nekas grezns. Šo sēriju var īsi uzrakstīt šādi: (a n).

Progresijas notiek ierobežots un bezgalīgs.

Galīgais progresijai ir ierobežots dalībnieku skaits. Pieci, trīsdesmit astoņi, vienalga. Bet tas ir ierobežots skaitlis.

Bezgalīgs progresija — ir bezgalīgs dalībnieku skaits, kā jūs varētu nojaust.)

Jūs varat uzrakstīt šādu sēriju galīgo progresu, visus terminus un punktu beigās:

1, 2, 3, 4, 5.

Vai šādi, ja ir daudz dalībnieku:

a 1, a 2, ... a 14, a 15.

Īsajā ierakstā papildus būs jānorāda dalībnieku skaits. Piemēram (divdesmit dalībniekiem) šādi:

(a n), n = 20

Bezgalīgu progresu var atpazīt pēc elipses rindas beigās, kā tas ir norādīts šīs nodarbības piemēros.

Tagad jūs varat atrisināt uzdevumus. Uzdevumi ir vienkārši, lai saprastu aritmētiskās progresijas nozīmi.

Aritmētiskās progresijas uzdevumu piemēri.

Apskatīsim iepriekš sniegto uzdevumu sīkāk:

1. Izrakstiet aritmētiskās progresijas (a n) pirmos sešus vārdus, ja a 2 = 5, d = -2,5.

Mēs tulkojam uzdevumu saprotamā valodā. Tiek dota bezgalīga aritmētiskā progresija. Ir zināms šīs progresa otrais numurs: a 2 = 5. Progresēšanas atšķirība ir zināma: d = -2,5. Mums ir jāatrod šīs progresa pirmais, trešais, ceturtais, piektais un sestais termins.

Skaidrības labad pierakstīšu sēriju atbilstoši problēmas apstākļiem. Pirmie seši termini, kur otrais termiņš ir pieci:

1, 5, 3, 4, 5, 6,...

a 3 = a 2 + d

Aizstāt ar izteiksmi a 2 = 5 Un d = -2,5. Neaizmirstiet par mīnusiem!

a 3=5+(-2,5)=5 - 2,5 = 2,5

Trešais termiņš izrādījās mazāks par otro. Viss ir loģiski. Ja skaitlis ir lielāks par iepriekšējo negatīvs vērtība, kas nozīmē, ka pats skaitlis būs mazāks par iepriekšējo. Progresēšana samazinās. Labi, ņemsim to vērā.) Mēs ieskaitām mūsu sērijas ceturto termiņu:

a 4 = a 3 + d

a 4=2,5+(-2,5)=2,5 - 2,5 = 0

a 5 = a 4 + d

a 5=0+(-2,5)= - 2,5

a 6 = a 5 + d

a 6=-2,5+(-2,5)=-2,5 - 2,5 = -5

Tātad tika aprēķināti termiņi no trešā līdz sestajam. Rezultāts ir šāda sērija:

a 1, 5, 2,5, 0, -2,5, -5, ....

Atliek atrast pirmo terminu a 1 saskaņā ar labi zināmo otro. Tas ir solis otrā virzienā, pa kreisi.) Tātad aritmētiskās progresijas atšķirība d nevajadzētu pievienot a 2, A atņemt:

a 1 = a 2 - d

a 1=5-(-2,5)=5 + 2,5=7,5

Tas arī viss. Uzdevuma atbilde:

7,5, 5, 2,5, 0, -2,5, -5, ...

Garāmejot vēlos atzīmēt, ka mēs šo uzdevumu atrisinājām atkārtojas veidā. Šis briesmīgais vārds nozīmē tikai progresa biedra meklēšanu atbilstoši iepriekšējam (blakus esošajam) numuram. Tālāk apskatīsim citus veidus, kā strādāt ar progresēšanu.

No šī vienkāršā uzdevuma var izdarīt vienu svarīgu secinājumu.

Atcerieties:

Ja zinām vismaz vienu terminu un aritmētiskās progresijas starpību, mēs varam atrast jebkuru šīs progresijas terminu.

Vai atceries? Šis vienkāršais secinājums ļauj atrisināt lielāko daļu skolas kursa problēmu par šo tēmu. Visi uzdevumi ir saistīti ar trim galvenajiem parametriem: aritmētiskās progresijas loceklis, progresijas starpība, progresijas locekļa numurs. Visi.

Protams, visa iepriekšējā algebra netiek atcelta.) Nevienādības, vienādojumi un citas lietas ir saistītas ar progresēšanu. Bet atbilstoši pašai progresijai- viss griežas ap trim parametriem.

Piemēram, apskatīsim dažus populārus uzdevumus par šo tēmu.

2. Uzrakstiet galīgo aritmētisko progresiju kā sēriju, ja n=5, d = 0,4 un a 1 = 3,6.

Šeit viss ir vienkārši. Viss jau ir dots. Jums jāatceras, kā tiek skaitīti aritmētiskās progresijas termini, tie jāsaskaita un jāpieraksta. Uzdevuma nosacījumos vēlams nepalaist garām vārdus: “fināls” un “ n=5". Lai neskaitītu, līdz esat pilnīgi zils sejā.) Šajā progresā ir tikai 5 (pieci) dalībnieki:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

a 4 = a 3 + d = 4,4 + 0,4 = 4,8

a 5 = a 4 + d = 4,8 + 0,4 = 5,2

Atliek pierakstīt atbildi:

3,6; 4; 4,4; 4,8; 5,2.

Vēl viens uzdevums:

3. Nosakiet, vai skaitlis 7 būs aritmētiskās progresijas (a n) dalībnieks, ja a 1 = 4,1; d = 1,2.

Hmm... Kas zina? Kā kaut ko noteikt?

Kā-kā... Pieraksti progresu sērijas veidā un paskaties, būs vai nebūs septītnieks! Mēs uzskaitām:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

a 4 = a 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Tagad ir skaidri redzams, ka esam tikai septiņi izslīdēja cauri no 6,5 līdz 7,7! Septiņi neietilpa mūsu skaitļu sērijā, un tāpēc septiņi nebūs dotās progresijas dalībnieki.

Atbilde: nē.

Un šeit ir problēma, kuras pamatā ir reāla GIA versija:

4. Tiek izrakstīti vairāki secīgi aritmētiskās progresijas termini:

...; 15; X; 9; 6; ...

Šeit ir sērija, kas rakstīta bez beigām un sākuma. Nav dalībnieku numuru, nav atšķirības d. Viss kārtībā. Lai atrisinātu problēmu, pietiek saprast aritmētiskās progresijas nozīmi. Apskatīsim un redzēsim, kas ir iespējams zināt no šīs sērijas? Kādi ir trīs galvenie parametri?

Dalībnieku numuri? Šeit nav neviena numura.

Bet ir trīs skaitļi un - uzmanību! - vārds "konsekventi" stāvoklī. Tas nozīmē, ka skaitļi ir stingri sakārtoti, bez atstarpēm. Vai šajā rindā ir divi? kaimiņos zināmi cipari? Jā, man ir! Tie ir 9 un 6. Tāpēc mēs varam aprēķināt aritmētiskās progresijas starpību! Atņemiet no sešiem iepriekšējā numurs, t.i. deviņi:

Ir palikuši tikai sīkumi. Kāds skaitlis būs iepriekšējais X? Piecpadsmit. Tas nozīmē, ka X var viegli atrast, vienkārši pievienojot. Pievienojiet aritmētiskās progresijas starpību 15:

Tas arī viss. Atbilde: x=12

Tālāk norādītās problēmas risinām paši. Piezīme: šīs problēmas nav balstītas uz formulām. Tīri, lai saprastu aritmētiskās progresijas nozīmi.) Mēs vienkārši pierakstām ciparu un burtu virkni, skatāmies un izdomājam.

5. Atrodiet pirmo pozitīvo aritmētiskās progresijas biedru, ja a 5 = -3; d = 1,1.

6. Ir zināms, ka skaitlis 5,5 ir aritmētiskās progresijas (a n) dalībnieks, kur a 1 = 1,6; d = 1,3. Nosakiet šī locekļa skaitli n.

7. Ir zināms, ka aritmētiskajā progresijā a 2 = 4; a 5 = 15,1. Atrodi 3.

8. Izraksti vairākus secīgus aritmētiskās progresijas terminus:

...; 15,6; X; 3,4; ...

Atrodiet progresijas termiņu, kas apzīmēts ar burtu x.

9. Vilciens sāka kustēties no stacijas, vienmērīgi palielinot ātrumu par 30 metriem minūtē. Kāds būs vilciena ātrums pēc piecām minūtēm? Sniedziet atbildi km/h.

10. Zināms, ka aritmētiskajā progresijā a 2 = 5; a 6 = -5. Atrodi 1.

Atbildes (nekārtīgi): 7,7; 7,5; 9,5; 9; 0,3; 4.

Vai viss izdevās? Apbrīnojami! Nākamajās nodarbībās varat apgūt aritmētisko progresiju augstākā līmenī.

Vai viss neizdevās? Nav problēmu. Speciālajā 555. sadaļā visas šīs problēmas ir sakārtotas pa gabalu.) Un, protams, ir aprakstīts vienkāršs praktisks paņēmiens, kas uzreiz skaidri, nepārprotami, vienā mirklī izceļ šādu uzdevumu risinājumu!

Starp citu, vilcienu mīklā ir divas problēmas, par kurām cilvēki bieži paklūp. Viens ir tikai progresēšanas ziņā, bet otrs ir vispārīgs attiecībā uz visām matemātikas un arī fizikas problēmām. Šis ir izmēru tulkojums no viena uz otru. Tas parāda, kā šīs problēmas būtu jārisina.

Šajā nodarbībā aplūkojām aritmētiskās progresijas elementāro nozīmi un tās galvenos parametrus. Tas ir pietiekami, lai atrisinātu gandrīz visas problēmas par šo tēmu. Pievienot d uz cipariem, uzraksti sēriju, viss atrisināsies.

Pirkstu risinājums labi darbojas ļoti īsām rindas daļām, kā tas ir šīs apmācības piemēros. Ja sērija ir garāka, aprēķini kļūst sarežģītāki. Piemēram, ja jautājuma 9. uzdevumā mēs aizstājam "piecas minūtes" ieslēgts "trīsdesmit piecas minūtes" problēma ievērojami pasliktināsies.)

Un ir arī uzdevumi, kas pēc būtības ir vienkārši, bet aprēķinu ziņā absurdi, piemēram:

Tiek dota aritmētiskā progresija (a n). Atrodiet 121, ja 1 = 3 un d = 1/6.

Nu ko, vai mēs pievienosim 1/6 daudzas, daudzas reizes?! Vai tu vari nogalināt sevi!?

Jūs varat.) Ja nezināt vienkāršu formulu, pēc kuras jūs varat atrisināt šādus uzdevumus minūtē. Šī formula būs nākamajā nodarbībā. Un tur šī problēma ir atrisināta. Pēc minūtes.)

Ja jums patīk šī vietne...

Starp citu, man jums ir vēl dažas interesantas vietnes.)

Jūs varat praktizēt piemēru risināšanu un uzzināt savu līmeni. Testēšana ar tūlītēju verifikāciju. Mācīsimies - ar interesi!)

Var iepazīties ar funkcijām un atvasinājumiem.

Daži cilvēki vārdu “progresēšana” izturas piesardzīgi, jo tas ir ļoti sarežģīts termins no augstākās matemātikas nozarēm. Tikmēr vienkāršākā aritmētiskā progresija ir taksometra skaitītāja darbs (kur tie joprojām pastāv). Un saprast aritmētiskās secības būtību (un matemātikā nav nekā svarīgāka par “būtības iegūšanu”) nav nemaz tik grūti, analizējot dažus elementārus jēdzienus.

Matemātiskā skaitļu secība

Skaitlisku secību parasti sauc par skaitļu sēriju, no kurām katrai ir savs numurs.

a 1 ir secības pirmais dalībnieks;

un 2 ir secības otrais loceklis;

un 7 ir secības septītais dalībnieks;

un n ir secības n-tais dalībnieks;

Tomēr neviena patvaļīga skaitļu un skaitļu kopa mūs neinteresē. Mēs pievērsīsim uzmanību skaitliskai secībai, kurā n-tā vārda vērtība ir saistīta ar tā kārtas skaitli ar matemātiski skaidri formulējamu sakarību. Citiem vārdiem sakot: n-tā skaitļa skaitliskā vērtība ir kāda n funkcija.

a ir skaitliskās secības locekļa vērtība;

n ir tā sērijas numurs;

f(n) ir funkcija, kur kārtas skaitlis skaitliskā secībā n ir arguments.

Definīcija

Aritmētisko progresiju parasti sauc par ciparu secību, kurā katrs nākamais loceklis ir par tādu pašu skaitli lielāks (mazāks) par iepriekšējo. Aritmētiskās secības n-tā vārda formula ir šāda:

a n - aritmētiskās progresijas pašreizējā locekļa vērtība;

a n+1 - nākamā skaitļa formula;

d - atšķirība (noteikts skaitlis).

Ir viegli noteikt, ka, ja starpība ir pozitīva (d>0), tad katrs nākamais aplūkojamās rindas dalībnieks būs lielāks par iepriekšējo un šāda aritmētiskā progresija pieaugs.

Zemāk esošajā grafikā ir viegli saprast, kāpēc skaitļu secība tiek saukta par “pieaugošu”.

Gadījumos, kad starpība ir negatīva (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Norādītā dalībnieka vērtība

Dažreiz ir nepieciešams noteikt jebkura aritmētiskās progresijas patvaļīga vārda a n vērtību. To var izdarīt, secīgi aprēķinot visu aritmētiskās progresijas dalībnieku vērtības, sākot no pirmā līdz vajadzīgajam. Taču šis ceļš ne vienmēr ir pieņemams, ja, piemēram, ir jāatrod piectūkstošā vai astoņmiljonā termiņa vērtība. Tradicionālie aprēķini prasīs daudz laika. Tomēr konkrētu aritmētisko progresiju var izpētīt, izmantojot noteiktas formulas. Ir arī formula n-tajam vārdam: jebkura aritmētiskās progresijas vārda vērtību var noteikt kā progresijas pirmā vārda summu ar progresijas starpību, kas reizināta ar vēlamā vārda skaitu, kas samazināta ar viens.

Formula ir universāla progresēšanas palielināšanai un samazināšanai.

Dotā termina vērtības aprēķināšanas piemērs

Atrisināsim šādu aritmētiskās progresijas n-tā vārda vērtības atrašanas uzdevumu.

Nosacījums: ir aritmētiskā progresija ar parametriem:

Secības pirmais loceklis ir 3;

Skaitļu sēriju atšķirība ir 1,2.

Uzdevums: jāatrod 214 terminu vērtība

Risinājums: lai noteiktu dotā termina vērtību, mēs izmantojam formulu:

a(n) = a1 + d(n-1)

Aizstājot datus no problēmas paziņojuma izteiksmē, mēs iegūstam:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Atbilde: Secības 214. termins ir vienāds ar 258,6.

Šīs aprēķina metodes priekšrocības ir acīmredzamas - viss risinājums aizņem ne vairāk kā 2 rindas.

Noteikta terminu skaita summa

Ļoti bieži noteiktā aritmētiskajā sērijā ir jānosaka dažu tās segmentu vērtību summa. Lai to izdarītu, nav arī jāaprēķina katra termina vērtības un pēc tam tās jāsaskaita. Šo metodi var izmantot, ja terminu skaits, kuru summa jāatrod, ir mazs. Citos gadījumos ērtāk ir izmantot šādu formulu.

Aritmētiskās progresijas vārdu summa no 1 līdz n ir vienāda ar pirmā un n-tā vārda summu, kas reizināta ar vārda n skaitu un dalīta ar divi. Ja formulā n-tā vārda vērtību aizstāj ar izteiksmi no raksta iepriekšējās rindkopas, mēs iegūstam:

Aprēķinu piemērs

Piemēram, atrisināsim problēmu ar šādiem nosacījumiem:

Secības pirmais loceklis ir nulle;

Atšķirība ir 0,5.

Problēma prasa noteikt rindas nosacījumu summu no 56 līdz 101.

Risinājums. Progresijas apjoma noteikšanai izmantosim formulu:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Pirmkārt, mēs nosakām progresijas 101 vārda vērtību summu, aizstājot mūsu problēmas dotos nosacījumus formulā:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2525

Acīmredzot, lai noskaidrotu progresijas terminu summu no 56. uz 101., no S 101 ir jāatņem S 55.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Tādējādi šī piemēra aritmētiskās progresijas summa ir:

s 101 - s 55 = 2525 - 742,5 = 1782,5

Aritmētiskās progresijas praktiskā pielietojuma piemērs

Raksta beigās atgriezīsimies pie pirmajā rindkopā dotā aritmētiskās secības piemēra - taksometra skaitītāja (taksometra skaitītājs). Apskatīsim šo piemēru.

Iekāpšana taksometrā (kas ietver 3 km braucienu) maksā 50 rubļus. Par katru nākamo kilometru maksā 22 rubļi/km. Brauciena attālums ir 30 km. Aprēķiniet ceļojuma izmaksas.

1. Atmetīsim pirmos 3 km, kuru cena ir iekļauta nosēšanās izmaksās.

30 - 3 = 27 km.

2. Tālākais aprēķins nav nekas cits kā aritmētisko skaitļu sērijas parsēšana.

Dalībnieka numurs - nobraukto kilometru skaits (atskaitot pirmos trīs).

Dalībnieka vērtība ir summa.

Pirmais termins šajā uzdevumā būs vienāds ar 1 = 50 rubļiem.

Progresijas starpība d = 22 r.

mūs interesējošais skaitlis ir aritmētiskās progresijas (27+1) vārda vērtība - skaitītāja rādījums 27. kilometra beigās ir 27,999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Kalendāra datu aprēķini patvaļīgi ilgam periodam ir balstīti uz formulām, kas apraksta noteiktas skaitliskās secības. Astronomijā orbītas garums ir ģeometriski atkarīgs no debess ķermeņa attāluma līdz zvaigznei. Turklāt dažādas skaitļu rindas tiek veiksmīgi izmantotas statistikā un citās lietišķās matemātikas jomās.

Cits skaitļu secības veids ir ģeometrisks

Ģeometrisko progresiju raksturo lielāks izmaiņu ātrums, salīdzinot ar aritmētisko progresiju. Nav nejaušība, ka politikā, socioloģijā un medicīnā, lai parādītu kādas konkrētas parādības, piemēram, slimības epidēmijas laikā, lielo izplatības ātrumu, mēdz teikt, ka process attīstās ģeometriskā progresijā.

Ģeometrisko skaitļu sērijas N-tais loceklis atšķiras no iepriekšējā ar to, ka tas tiek reizināts ar kādu konstantu skaitli - saucējs, piemēram, pirmais loceklis ir 1, saucējs attiecīgi ir vienāds ar 2, tad:

n = 1: 1 ∙ 2 = 2

n = 2: 2 ∙ 2 = 4

n=3: 4∙ 2 = 8

n=4: 8 ∙ 2 = 16

n = 5: 16 ∙ 2 = 32,

b n - ģeometriskās progresijas pašreizējā termiņa vērtība;

b n+1 - ģeometriskās progresijas nākamā vārda formula;

q ir ģeometriskās progresijas saucējs (konstants skaitlis).

Ja aritmētiskās progresijas grafiks ir taisna līnija, tad ģeometriskā progresija veido nedaudz atšķirīgu attēlu:

Tāpat kā aritmētikas gadījumā, ģeometriskajai progresijai ir patvaļīga vārda vērtības formula. Jebkurš ģeometriskās progresijas n-tais loceklis ir vienāds ar pirmā vārda un progresijas saucēja reizinājumu līdz pakāpei n, kas samazināts par vienu:

Piemērs. Mums ir ģeometriskā progresija, kuras pirmais loceklis ir vienāds ar 3 un progresijas saucējs ir vienāds ar 1,5. Atradīsim progresijas 5. terminu

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Izmantojot īpašu formulu, tiek aprēķināta arī noteikta terminu skaita summa. Ģeometriskās progresijas pirmo n vārdu summa ir vienāda ar starpību starp progresijas n-tā vārda un tā saucēja reizinājumu un progresijas pirmo daļu, kas dalīta ar saucēju, kas samazināts ar vienu:

Ja b n tiek aizstāts, izmantojot iepriekš aprakstīto formulu, aplūkojamās skaitļu sērijas pirmo n vārdu summas vērtība būs šāda:

Piemērs. Ģeometriskā progresija sākas ar pirmo vārdu, kas vienāds ar 1. Saucējs ir iestatīts uz 3. Atradīsim pirmo astoņu vārdu summu.

s8 = 1 ∙ (3 8 -1) / (3 -1) = 3 280


Jā, jā: aritmētiskā progresija tev nav rotaļlieta :)

Nu, draugi, ja jūs lasāt šo tekstu, tad iekšējie vāciņu pierādījumi man saka, ka jūs vēl nezināt, kas ir aritmētiskā progresija, bet jūs patiešām (nē, šādi: TŪLĪGI!) vēlaties zināt. Tāpēc nemocīšu jūs ar gariem ievadiem un ķeršos pie lietas.

Pirmkārt, pāris piemēri. Apskatīsim vairākas skaitļu kopas:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Kas kopīgs visiem šiem komplektiem? No pirmā acu uzmetiena nekas. Bet patiesībā ir kaut kas. Proti: katrs nākamais elements atšķiras no iepriekšējā ar tādu pašu numuru.

Spriediet paši. Pirmajā komplektā ir vienkārši secīgi skaitļi, katrs nākamais ir par vienu vairāk nekā iepriekšējais. Otrajā gadījumā starpība starp blakus esošajiem skaitļiem jau ir pieci, taču šī atšķirība joprojām ir nemainīga. Trešajā gadījumā saknes ir pavisam. Tomēr $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ un $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, t.i. un šajā gadījumā katrs nākamais elements vienkārši palielinās par $\sqrt(2)$ (un nebaidieties, ka šis skaitlis ir neracionāls).

Tātad: visas šādas secības sauc par aritmētisko progresiju. Sniegsim stingru definīciju:

Definīcija. Skaitļu secību, kurā katrs nākamais atšķiras no iepriekšējā tieši ar tādu pašu summu, sauc par aritmētisko progresiju. Pati summa, ar kuru skaitļi atšķiras, tiek saukta par progresijas starpību un visbiežāk tiek apzīmēta ar burtu $d$.

Apzīmējums: $\left(((a)_(n)) \right)$ ir pati progresija, $d$ ir tās atšķirība.

Un tikai dažas svarīgas piezīmes. Pirmkārt, tiek ņemta vērā tikai progresēšana pasūtīts ciparu secība: tos ir atļauts lasīt stingri tādā secībā, kādā tie ir rakstīti - un nekas cits. Numurus nevar pārkārtot vai apmainīt.

Otrkārt, pati secība var būt gan ierobežota, gan bezgalīga. Piemēram, kopa (1; 2; 3) acīmredzami ir ierobežota aritmētiskā progresija. Bet ja kaut ko raksti garā (1; 2; 3; 4; ...) - tā jau ir bezgalīga progresija. Elipse pēc četrinieka, šķiet, norāda uz to, ka ir vēl daži skaitļi. Bezgala daudz, piemēram :)

Es arī vēlos atzīmēt, ka progresēšana var palielināties vai samazināties. Mēs jau esam redzējuši pieaugošus - tas pats komplekts (1; 2; 3; 4; ...). Tālāk ir sniegti progresēšanas samazināšanās piemēri:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Labi, labi: pēdējais piemērs var šķist pārāk sarežģīts. Bet pārējo, manuprāt, jūs saprotat. Tāpēc mēs ieviešam jaunas definīcijas:

Definīcija. Aritmētisko progresiju sauc:

  1. palielinās, ja katrs nākamais elements ir lielāks par iepriekšējo;
  2. samazinās, ja, gluži pretēji, katrs nākamais elements ir mazāks par iepriekšējo.

Turklāt ir tā sauktās “stacionārās” secības - tās sastāv no viena un tā paša atkārtojoša skaitļa. Piemēram, (3; 3; 3; ...).

Atliek tikai viens jautājums: kā atšķirt pieaugošu progresu no samazinoša? Par laimi, šeit viss ir atkarīgs tikai no skaitļa $d$ zīmes, t.i. progresēšanas atšķirības:

  1. Ja $d \gt 0$, tad progresija palielinās;
  2. Ja $d \lt 0$, tad progresija acīmredzami samazinās;
  3. Visbeidzot, ir gadījums $d=0$ - šajā gadījumā visa progresija tiek reducēta līdz stacionārai identisku skaitļu secībai: (1; 1; 1; 1; ...) utt.

Mēģināsim aprēķināt starpību $d$ trim iepriekš norādītajām lejupejošām progresijām. Lai to izdarītu, pietiek paņemt divus blakus esošos elementus (piemēram, pirmo un otro) un atņemt kreisajā pusē esošo skaitli no skaitļa labajā pusē. Tas izskatīsies šādi:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Kā redzam, visos trīs gadījumos starpība faktiski izrādījās negatīva. Un tagad, kad esam vairāk vai mazāk izdomājuši definīcijas, ir pienācis laiks izdomāt, kā tiek aprakstītas progresijas un kādas īpašības tām piemīt.

Progresēšanas termini un atkārtošanās formula

Tā kā mūsu secību elementus nevar apmainīt, tos var numurēt:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \pareizi\)\]

Atsevišķos šīs kopas elementus sauc par progresijas dalībniekiem. Tie ir apzīmēti ar numuru: pirmais dalībnieks, otrais dalībnieks utt.

Turklāt, kā mēs jau zinām, blakus esošie progresijas termini ir saistīti ar formulu:

\[((a)_(n))-((a)_(n-1))=d\Labā bultiņa ((a)_(n))=((a)_(n-1))+d \]

Īsāk sakot, lai atrastu progresijas $n$. daļu, jums jāzina $n-1$. termins un atšķirība $d$. Šo formulu sauc par atkārtotu, jo ar tās palīdzību jūs varat atrast jebkuru skaitli, tikai zinot iepriekšējo (un faktiski visus iepriekšējos). Tas ir ļoti neērti, tāpēc ir viltīgāka formula, kas visus aprēķinus samazina līdz pirmajam terminam un starpībai:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

Jūs, iespējams, jau esat saskāries ar šo formulu. Viņiem patīk to dot visādās uzziņu grāmatās un risinājumu grāmatās. Un jebkurā saprātīgā matemātikas mācību grāmatā tas ir viens no pirmajiem.

Tomēr es iesaku jums nedaudz trenēties.

Uzdevums Nr.1. Pierakstiet pirmos trīs aritmētiskās progresijas vārdus $\left(((a)_(n)) \right)$, ja $((a)_(1))=8,d=-5$.

Risinājums. Tātad, mēs zinām pirmo terminu $((a)_(1))=8$ un progresijas starpību $d=-5$. Izmantosim tikko doto formulu un aizstāsim $n=1$, $n=2$ un $n=3$:

\[\begin(līdzināt) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(līdzināt)\]

Atbilde: (8; 3; -2)

Tas arī viss! Lūdzu, ņemiet vērā: mūsu attīstība samazinās.

Protams, $n=1$ nevarēja aizstāt - pirmais termins mums jau ir zināms. Tomēr, aizstājot vienotību, mēs pārliecinājāmies, ka pat pirmajā termiņā mūsu formula darbojas. Citos gadījumos viss nonāca līdz banālai aritmētikai.

Uzdevums Nr.2. Pierakstiet pirmos trīs aritmētiskās progresijas vārdus, ja tās septītais loceklis ir vienāds ar –40 un septiņpadsmitais ir vienāds ar –50.

Risinājums. Uzrakstīsim problēmas nosacījumu pazīstamos terminos:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(līdzināt) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(līdzināt) \pa labi.\]

\[\left\( \begin(līdzināt) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(līdzināt) \pareizi.\]

Es ievietoju sistēmas zīmi, jo šīs prasības ir jāizpilda vienlaikus. Tagad ņemsim vērā, ka, ja mēs atņemam pirmo no otrā vienādojuma (mums ir tiesības to darīt, jo mums ir sistēma), mēs iegūstam šo:

\[\begin(līdzināt) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(līdzināt)\]

Tik vienkārši ir atrast progresijas atšķirību! Atliek tikai aizstāt atrasto skaitli jebkurā no sistēmas vienādojumiem. Piemēram, pirmajā:

\[\begin(matrica) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrica)\]

Tagad, zinot pirmo terminu un atšķirību, atliek atrast otro un trešo terminu:

\[\begin(līdzināt) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(līdzināt)\]

Gatavs! Problēma ir atrisināta.

Atbilde: (-34; -35; -36)

Ievērojiet interesanto progresijas īpašību, ko mēs atklājām: ja ņemam $n$th un $m$th vārdus un atņemam tos vienu no otra, mēs iegūstam progresijas starpību, kas reizināta ar $n-m$ skaitli:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Vienkāršs, bet ļoti noderīgs īpašums, kas noteikti ir jāzina - ar tā palīdzību jūs varat ievērojami paātrināt daudzu progresēšanas problēmu risinājumu. Šeit ir skaidrs piemērs tam:

Uzdevums Nr.3. Aritmētiskās progresijas piektais loceklis ir 8,4, bet desmitais ir 14,4. Atrodiet šīs progresijas piecpadsmito termiņu.

Risinājums. Tā kā $((a)_(5))=8.4$, $((a)_(10))=14.4$ un mums ir jāatrod $((a)_(15))$, mēs atzīmējam sekojošo:

\[\begin(līdzināt) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(līdzināt)\]

Bet pēc nosacījuma $((a)_(10))-((a)_(5))=14.4-8.4=6$, tātad $5d=6$, no kā mums ir:

\[\begin(līdzināt) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(līdzināt)\]

Atbilde: 20.4

Tas arī viss! Mums nebija jāveido vienādojumu sistēmas un jāaprēķina pirmais termins un starpība - viss tika atrisināts tikai pāris rindās.

Tagad apskatīsim cita veida problēmas – progresa negatīvo un pozitīvo terminu meklēšanu. Nav noslēpums, ka, ja progresija palielinās un tās pirmais termiņš ir negatīvs, tad agri vai vēlu tajā parādīsies pozitīvi termini. Un otrādi: progresēšanas samazināšanās nosacījumi agrāk vai vēlāk kļūs negatīvi.

Tajā pašā laikā, secīgi izejot cauri elementiem, šo brīdi ne vienmēr ir iespējams atrast “uz priekšu”. Bieži uzdevumi tiek rakstīti tā, ka, nezinot formulas, aprēķini aizņemtu vairākas papīra lapas — mēs vienkārši aizmigtu, kamēr atrodam atbildi. Tāpēc mēģināsim šīs problēmas atrisināt ātrāk.

Uzdevums Nr.4. Cik negatīvu vārdu ir aritmētiskajā progresijā −38,5; −35,8; ...?

Risinājums. Tātad $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, no kurienes mēs uzreiz atrodam atšķirību:

Ņemiet vērā, ka atšķirība ir pozitīva, tāpēc progresēšana palielinās. Pirmais termins ir negatīvs, tāpēc patiešām kādā brīdī mēs paklupsim uz pozitīviem skaitļiem. Jautājums tikai, kad tas notiks.

Mēģināsim noskaidrot, cik ilgi (t.i., līdz kādam naturālajam skaitlim $n$) saglabājas terminu negatīvisms:

\[\begin(līdzināt) & ((a)_(n)) \lt 0\labā bultiņa ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \pa labi. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Labā bultiņa ((n)_(\max ))=15. \\ \end(līdzināt)\]

Pēdējā rindiņa prasa zināmu skaidrojumu. Tātad mēs zinām, ka $n \lt 15\frac(7)(27)$. No otras puses, mūs apmierina tikai veselas skaitļa vērtības (turklāt: $n\in \mathbb(N)$), tāpēc lielākais pieļaujamais skaitlis ir tieši $n=15$ un nekādā gadījumā 16. .

Uzdevums Nr.5. Aritmētiskajā progresijā $(()_(5))=-150,(()_(6))=-147$. Atrodiet šīs progresijas pirmā pozitīvā termiņa skaitli.

Šī būtu tieši tāda pati problēma kā iepriekšējā, taču mēs nezinām $((a)_(1))$. Bet blakus termini ir zināmi: $((a)_(5))$ un $((a)_(6))$, tāpēc mēs varam viegli atrast progresijas atšķirību:

Turklāt mēģināsim izteikt piekto terminu caur pirmo un starpību, izmantojot standarta formulu:

\[\begin(līdzināt) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(līdzināt)\]

Tagad mēs turpinām pēc analoģijas ar iepriekšējo uzdevumu. Noskaidrosim, kurā mūsu secības punktā parādīsies pozitīvi skaitļi:

\[\begin(līdzināt) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Labā bultiņa ((n)_(\min ))=56. \\ \end(līdzināt)\]

Šīs nevienlīdzības minimālais veselais skaitļa risinājums ir skaitlis 56.

Lūdzu, ņemiet vērā: pēdējā uzdevumā viss nonāca līdz stingrai nevienlīdzībai, tāpēc opcija $n=55$ mums nederēs.

Tagad, kad esam iemācījušies atrisināt vienkāršas problēmas, pāriesim pie sarežģītākām. Bet vispirms izpētīsim vēl vienu ļoti noderīgu aritmētiskās progresijas īpašību, kas ietaupīs mums daudz laika un nevienlīdzīgas šūnas :)

Vidējais aritmētiskais un vienādi atkāpi

Apskatīsim vairākus secīgus pieaugošās aritmētiskās progresijas $\left(((a)_(n)) \right)$ nosacījumus. Mēģināsim tos atzīmēt skaitļu rindā:

Aritmētiskās progresijas noteikumi uz skaitļu taisnes

Es īpaši atzīmēju patvaļīgus terminus $((a)_(n-3)),...,((a)_(n+3))$, nevis kādus $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ utt. Jo noteikums, par kuru es jums pastāstīšu tagad, attiecas uz visiem “segmentiem”.

Un noteikums ir ļoti vienkāršs. Atcerēsimies atkārtoto formulu un uzrakstīsim to visiem atzīmētajiem terminiem:

\[\begin(līdzināt) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(līdzināt)\]

Tomēr šīs vienlīdzības var pārrakstīt atšķirīgi:

\[\begin(līdzināt) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(līdzināt)\]

Nu ko? Un tas, ka termini $((a)_(n-1))$ un $((a)_(n+1))$ atrodas vienādā attālumā no $((a)_(n)) $ . Un šis attālums ir vienāds ar $d$. To pašu var teikt par jēdzieniem $((a)_(n-2))$ un $((a)_(n+2))$ - tie arī tiek noņemti no $((a)_(n) )$ tādā pašā attālumā, kas vienāds ar $2d$. Mēs varam turpināt līdz bezgalībai, bet nozīmi labi ilustrē attēls


Progresēšanas nosacījumi atrodas vienādā attālumā no centra

Ko tas mums nozīmē? Tas nozīmē, ka $((a)_(n))$ var atrast, ja ir zināmi blakus esošie skaitļi:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Mēs esam ieguvuši lielisku apgalvojumu: katrs aritmētiskās progresijas vārds ir vienāds ar blakus esošo vārdu vidējo aritmētisko! Turklāt: mēs varam atkāpties no mūsu $((a)_(n))$ pa kreisi un pa labi nevis par vienu soli, bet par $k$ soļiem - un formula joprojām būs pareiza:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Tie. mēs varam viegli atrast $((a)_(150))$, ja zinām $((a)_(100))$ un $((a)_(200))$, jo $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. No pirmā acu uzmetiena var šķist, ka šis fakts mums neko noderīgu nedod. Tomēr praksē daudzas problēmas ir īpaši pielāgotas, lai izmantotu vidējo aritmētisko. Paskaties:

Uzdevums Nr.6. Atrodiet visas $x$ vērtības, kurām skaitļi $-6((x)^(2))$, $x+1$ un $14+4((x)^(2))$ ir secīgi aritmētiskā progresija (norādītajā secībā).

Risinājums. Tā kā šie skaitļi ir progresijas locekļi, tiem ir izpildīts vidējais aritmētiskais nosacījums: centrālo elementu $x+1$ var izteikt ar blakus esošajiem elementiem:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(līdzināt)\]

Rezultāts ir klasisks kvadrātvienādojums. Tās saknes: $x=2$ un $x=-3$ ir atbildes.

Atbilde: −3; 2.

Uzdevums Nr.7. Atrodiet $$ vērtības, kurām skaitļi $-1;4-3;(()^(2))+1$ veido aritmētisko progresiju (šajā secībā).

Risinājums. Vēlreiz izteiksim vidējo terminu, izmantojot blakus esošo terminu vidējo aritmētisko:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(līdzināt)\]

Atkal kvadrātvienādojums. Un atkal ir divas saknes: $x=6$ un $x=1$.

Atbilde: 1; 6.

Ja problēmas risināšanas procesā jūs izdomājat dažus brutālus skaitļus vai neesat pilnībā pārliecināts par atrasto atbilžu pareizību, tad ir brīnišķīgs paņēmiens, kas ļauj pārbaudīt: vai mēs esam pareizi atrisinājuši problēmu?

Teiksim, uzdevumā Nr. 6 saņēmām atbildes −3 un 2. Kā mēs varam pārbaudīt, vai šīs atbildes ir pareizas? Vienkārši pievienosim tos sākotnējā stāvoklī un redzēsim, kas notiks. Atgādināšu, ka mums ir trīs skaitļi ($-6(()^(2))$, $+1$ un $14+4(()^(2))$), kuriem jāveido aritmētiskā progresija. Aizstāsim $x=-3$:

\[\begin(līdzināt) & x=-3\labā bultiņa \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(līdzināt)\]

Mēs saņēmām skaitļus -54; −2; 50, kas atšķiras ar 52, neapšaubāmi ir aritmētiska progresija. Tas pats notiek ar $x=2$:

\[\begin(līdzināt) & x=2\labā bultiņa \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(līdzināt)\]

Atkal progresija, bet ar starpību 27. Tādējādi problēma tika atrisināta pareizi. Tie, kas vēlas, var paši pārbaudīt otro problēmu, bet es teikšu uzreiz: arī tur viss ir pareizi.

Kopumā, risinot pēdējās problēmas, mēs saskārāmies ar vēl vienu interesantu faktu, kas arī jāatceras:

Ja trīs skaitļi ir tādi, ka otrais ir pirmā un pēdējā aritmētiskais vidējais, tad šie skaitļi veido aritmētisko progresiju.

Nākotnē šī apgalvojuma izpratne ļaus mums burtiski “konstruēt” nepieciešamos virzienus, pamatojoties uz problēmas apstākļiem. Taču, pirms ķeramies pie šādas “būvniecības”, jāpievērš uzmanība vēl vienam faktam, kas tieši izriet no jau apspriestā.

Elementu grupēšana un summēšana

Atkal atgriezīsimies pie skaitļu ass. Atzīmēsim tur vairākus progresijas dalībniekus, starp kuriem, iespējams. ir daudzu citu dalībnieku vērts:

Uz skaitļu līnijas ir atzīmēti 6 elementi

Mēģināsim izteikt “kreiso asti” caur $((a)_(n))$ un $d$, bet “labo asti” caur $((a)_(k))$ un $d$. Tas ir ļoti vienkārši:

\[\begin(līdzināt) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(līdzināt)\]

Tagad ņemiet vērā, ka šādas summas ir vienādas:

\[\begin(līdzināt) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(līdzināt)\]

Vienkārši sakot, ja mēs par sākumu uzskatām divus progresēšanas elementus, kas kopā ir vienādi ar kādu skaitli $S$, un pēc tam sākam virzīties no šiem elementiem pretējos virzienos (viens pret otru vai otrādi, lai attālinātos), tad elementu summas, uz kurām mēs paklupsim, arī būs vienādas$S$. Visskaidrāk to var attēlot grafiski:


Vienādas atkāpes dod vienādas summas

Šī fakta izpratne ļaus mums atrisināt principiāli augstākas sarežģītības problēmas nekā tās, kuras mēs aplūkojām iepriekš. Piemēram, šie:

Uzdevums Nr.8. Nosakiet atšķirību aritmētiskajai progresijai, kurā pirmais loceklis ir 66, bet otrā un divpadsmitā vārda reizinājums ir mazākais iespējamais.

Risinājums. Pierakstīsim visu, ko zinām:

\[\begin(līdzināt) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(līdzināt)\]

Tātad, mēs nezinām progresijas starpību $d$. Faktiski viss risinājums tiks veidots, pamatojoties uz atšķirību, jo produktu $((a)_(2))\cdot ((a)_(12)) $ var pārrakstīt šādi:

\[\begin(līdzināt) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(līdzināt)\]

Tiem, kas atrodas tvertnē: es no otrās kronšteina paņēmu kopējo reizinātāju 11. Tādējādi nepieciešamais reizinājums ir kvadrātfunkcija attiecībā pret mainīgo $d$. Tāpēc apsveriet funkciju $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - tās grafiks būs parabola ar zariem uz augšu, jo ja mēs paplašinām iekavas, mēs iegūstam:

\[\begin(līdzināt) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(līdzināt)\]

Kā redzat, augstākā termiņa koeficients ir 11 - tas ir pozitīvs skaitlis, tāpēc mums patiešām ir darīšana ar parabolu ar augšupvērstiem zariem:


kvadrātfunkcijas grafiks - parabola

Lūdzu, ņemiet vērā: šī parabola iegūst minimālo vērtību tās virsotnē ar abscisu $((d)_(0))$. Protams, mēs varam aprēķināt šo abscisu, izmantojot standarta shēmu (ir formula $((d)_(0))=(-b)/(2a)\;$), taču daudz saprātīgāk būtu atzīmēt ka vēlamā virsotne atrodas uz parabolas ass simetrijas, tāpēc punkts $((d)_(0))$ atrodas vienādā attālumā no vienādojuma $f\left(d \right)=0$ saknēm:

\[\begin(līdzināt) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(līdzināt)\]

Tāpēc es īpaši nesteidzos atvērt kronšteinus: to sākotnējā formā saknes bija ļoti, ļoti viegli atrast. Tāpēc abscisa ir vienāda ar skaitļu −66 un −6 vidējo aritmētisko:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Ko mums dod atklātais skaitlis? Ar to vajadzīgais produkts iegūst mazāko vērtību (starp citu, mēs nekad neskaitījām $((y)_(\min ))$ - tas no mums netiek prasīts). Tajā pašā laikā šis skaitlis ir sākotnējās progresijas starpība, t.i. atradām atbildi. :)

Atbilde: −36

Uzdevums Nr.9. Starp skaitļiem $-\frac(1)(2)$ un $-\frac(1)(6)$ ievietojiet trīs skaitļus, lai kopā ar šiem skaitļiem tie veidotu aritmētisko progresiju.

Risinājums. Būtībā mums ir jāizveido piecu skaitļu secība ar jau zināmu pirmo un pēdējo numuru. Apzīmēsim trūkstošos skaitļus ar mainīgajiem $x$, $y$ un $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Ņemiet vērā, ka skaitlis $y$ ir mūsu secības “vidējais” — tas atrodas vienādā attālumā no skaitļiem $x$ un $z$, kā arī no skaitļiem $-\frac(1)(2)$ un $-\frac. (1) (6) $. Un, ja mēs pašlaik nevaram iegūt $y$ no skaitļiem $x$ un $z$, tad situācija ir citāda ar progresijas galiem. Atcerēsimies vidējo aritmētisko:

Tagad, zinot $y$, mēs atradīsim atlikušos skaitļus. Ņemiet vērā, ka $x$ atrodas starp skaitļiem $-\frac(1)(2)$ un $y=-\frac(1)(3)$, ko tikko atradām. Tieši tāpēc

Izmantojot līdzīgu argumentāciju, mēs atrodam atlikušo skaitli:

Gatavs! Mēs atradām visus trīs skaitļus. Atbildē ierakstīsim tos tādā secībā, kādā tie jāievieto starp oriģinālajiem cipariem.

Atbilde: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

10. uzdevums. Starp skaitļiem 2 un 42 ievietojiet vairākus skaitļus, kas kopā ar šiem skaitļiem veido aritmētisko progresiju, ja zināt, ka pirmā, otrā un pēdējā ievietoto skaitļu summa ir 56.

Risinājums. Vēl sarežģītāka problēma, kas tomēr tiek atrisināta pēc tādas pašas shēmas kā iepriekšējās - caur vidējo aritmētisko. Problēma ir tā, ka mēs precīzi nezinām, cik skaitļu ir jāievieto. Tāpēc pieņemsim skaidrības labad, ka pēc visa ievietošanas būs tieši $n$ skaitļi, un pirmais no tiem ir 2, bet pēdējais ir 42. Šajā gadījumā nepieciešamo aritmētisko progresiju var attēlot formā:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \labais\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Tomēr ņemiet vērā, ka skaitļi $((a)_(2))$ un $((a)_(n-1))$ tiek iegūti no skaitļiem 2 un 42 malās pa vienu soli viens pret otru, t.i. uz secības centru. Un tas nozīmē, ka

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Bet tad iepriekš uzrakstīto izteiksmi var pārrakstīt šādi:

\[\begin(līdzināt) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(līdzināt)\]

Zinot $((a)_(3))$ un $((a)_(1))$, mēs varam viegli atrast progresijas atšķirību:

\[\begin(līdzināt) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Labā bultiņa d=5. \\ \end(līdzināt)\]

Atliek tikai atrast atlikušos terminus:

\[\begin(līdzināt) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(līdzināt)\]

Līdz ar to jau 9. solī nonāksim pie virknes kreisā gala - skaitļa 42. Kopumā bija jāievieto tikai 7 skaitļi: 7; 12; 17; 22; 27; 32; 37.

Atbilde: 7; 12; 17; 22; 27; 32; 37

Vārdu problēmas ar progresēšanu

Nobeigumā es vēlētos apsvērt pāris salīdzinoši vienkāršas problēmas. Nu, tik vienkārši: lielākajai daļai skolēnu, kuri mācās matemātiku skolā un nav izlasījuši iepriekš rakstīto, šīs problēmas var šķist grūtas. Tomēr šie ir problēmu veidi, kas parādās OGE un vienotajā valsts eksāmenā matemātikā, tāpēc iesaku ar tiem iepazīties.

Uzdevums Nr.11. Komanda janvārī saražoja 62 detaļas un katrā nākamajā mēnesī par 14 daļām vairāk nekā iepriekšējā mēnesī. Cik detaļu komanda saražoja novembrī?

Risinājums. Acīmredzot pa mēnešiem uzskaitīto daļu skaits atspoguļos pieaugošu aritmētisko progresiju. Turklāt:

\[\begin(līdzināt) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(līdzināt)\]

Novembris ir gada 11. mēnesis, tāpēc mums jāatrod $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Līdz ar to novembrī tiks saražotas 202 detaļas.

12.uzdevums. Grāmatsiešanas darbnīca janvārī iesēja 216 grāmatas un katrā nākamajā mēnesī par 4 grāmatām vairāk nekā iepriekšējā. Cik grāmatu darbnīca iesēja decembrī?

Risinājums. Viss ir vienāds:

$\begin(līdzināt) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(līdzināt)$

Decembris ir gada pēdējais, 12. mēnesis, tāpēc meklējam $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Šī ir atbilde – decembrī tiks iesietas 260 grāmatas.

Nu, ja esat izlasījis tik tālu, es steidzos jūs apsveikt: jūs esat veiksmīgi pabeidzis "jaunā cīnītāja kursu" aritmētiskajā progresijā. Jūs varat droši pāriet uz nākamo nodarbību, kurā mēs pētīsim progresa summas formulu, kā arī svarīgas un ļoti noderīgas sekas no tās.

Tātad, apsēdīsimies un sāksim rakstīt dažus skaitļus. Piemēram:
Jūs varat rakstīt jebkurus ciparus, un to var būt tik daudz, cik vēlaties (mūsu gadījumā tie ir). Neatkarīgi no tā, cik skaitļus mēs rakstām, mēs vienmēr varam pateikt, kurš no tiem ir pirmais, kurš ir otrais un tā tālāk līdz pēdējam, tas ir, mēs varam tos numurēt. Šis ir skaitļu secības piemērs:

Skaitļu secība
Piemēram, mūsu secībai:

Piešķirtais numurs ir raksturīgs tikai vienam numuram secībā. Citiem vārdiem sakot, secībā nav trīs sekunžu skaitļu. Otrais cipars (tāpat kā th cipars) vienmēr ir vienāds.
Skaitli ar skaitli sauc par secības th terminu.

Mēs parasti saucam visu secību ar kādu burtu (piemēram,), un katrs šīs secības dalībnieks ir viens un tas pats burts ar indeksu, kas vienāds ar šī elementa numuru: .

Mūsu gadījumā:

Pieņemsim, ka mums ir skaitļu secība, kurā starpība starp blakus esošajiem skaitļiem ir vienāda un vienāda.
Piemēram:

utt.
Šo skaitļu secību sauc par aritmētisko progresiju.
Terminu "progresēšana" ieviesa romiešu autors Boetijs tālajā 6. gadsimtā un plašākā nozīmē to saprata kā bezgalīgu ciparu secību. Nosaukums "aritmētika" tika pārcelts no nepārtraukto proporciju teorijas, kuru pētīja senie grieķi.

Šī ir skaitļu virkne, kuras katrs dalībnieks ir vienāds ar iepriekšējo, kas pievienots tam pašam skaitlim. Šo skaitli sauc par aritmētiskās progresijas starpību un apzīmē.

Mēģiniet noteikt, kuras skaitļu secības ir aritmētiskā progresija un kuras nav:

a)
b)
c)
d)

Vai sapratāt? Salīdzināsim mūsu atbildes:
Ir aritmētiskā progresija - b, c.
Vai nav aritmētiskā progresija - a, d.

Atgriezīsimies pie dotās progresijas () un mēģināsim atrast tās th vārda vērtību. Pastāv divi veids, kā to atrast.

1. Metode

Mēs varam pievienot progresijas skaitli iepriekšējai vērtībai, līdz tiek sasniegts progresijas th. Labi, ka mums nav daudz ko apkopot - tikai trīs vērtības:

Tātad aprakstītās aritmētiskās progresijas th loceklis ir vienāds ar.

2. Metode

Ko darīt, ja mums būtu jāatrod progresijas th termina vērtība? Summēšana mums aizņemtu vairāk nekā vienu stundu, un tas nav fakts, ka mēs nekļūdītos, saskaitot skaitļus.
Protams, matemātiķi ir izdomājuši veidu, kā aritmētiskās progresijas starpību nav nepieciešams pievienot iepriekšējai vērtībai. Apskatiet uzzīmēto attēlu tuvāk... Noteikti jau esat pamanījuši noteiktu rakstu, proti:

Piemēram, paskatīsimies, no kā sastāv šīs aritmētiskās progresijas th termiņa vērtība:


Citiem vārdiem sakot:

Mēģiniet pats šādā veidā atrast dotās aritmētiskās progresijas locekļa vērtību.

Vai jūs aprēķinājāt? Salīdziniet savas piezīmes ar atbildi:

Lūdzu, ņemiet vērā, ka jūs saņēmāt tieši tādu pašu skaitli kā iepriekšējā metodē, kad mēs secīgi pievienojām aritmētiskās progresijas nosacījumus iepriekšējai vērtībai.
Mēģināsim “depersonalizēt” šo formulu - formulēsim to vispārīgā formā un iegūsim:

Aritmētiskās progresijas vienādojums.

Aritmētiskā progresija var palielināties vai samazināties.

Pieaug- progresijas, kurās katra nākamā terminu vērtība ir lielāka par iepriekšējo.
Piemēram:

Dilstoša- progresijas, kurās katra nākamā terminu vērtība ir mazāka par iepriekšējo.
Piemēram:

Atvasinātā formula tiek izmantota aritmētiskās progresijas terminu aprēķināšanai gan pieaugošajos, gan samazinošajos termiņos.
Pārbaudīsim to praksē.
Mums tiek dota aritmētiskā progresija, kas sastāv no šādiem skaitļiem: Pārbaudīsim, kāds būs šīs aritmētiskās progresijas skaitlis, ja izmantosim formulu, lai to aprēķinātu:


Kopš tā laika:

Tādējādi esam pārliecināti, ka formula darbojas gan dilstošā, gan pieaugošā aritmētiskajā progresijā.
Mēģiniet pats atrast šīs aritmētiskās progresijas th un th nosacījumus.

Salīdzināsim rezultātus:

Aritmētiskās progresijas īpašība

Sarežģīsim uzdevumu – atvasināsim aritmētiskās progresijas īpašību.
Pieņemsim, ka mums ir šāds nosacījums:
- aritmētiskā progresija, atrodiet vērtību.
Viegli, jūs sakāt un sāciet skaitīt pēc formulas, kuru jau zināt:

Ļaujiet, ah, tad:

Pilnīgi taisnība. Sanāk, ka vispirms atrodam, tad pievienojam pirmajam ciparam un iegūstam to, ko meklējam. Ja progresiju attēlo mazas vērtības, tad tajā nav nekā sarežģīta, bet ja nu nosacījumā mums ir doti skaitļi? Piekrītu, aprēķinos ir iespējama kļūda.
Tagad padomājiet, vai šo problēmu ir iespējams atrisināt vienā solī, izmantojot jebkuru formulu? Protams, jā, un tieši to mēs tagad mēģināsim izcelt.

Apzīmēsim vajadzīgo aritmētiskās progresijas terminu kā mums zināmo formulu tā atrašanai - šī ir tā pati formula, ko mēs atvasinājām sākumā:
, Tad:

  • iepriekšējais progresēšanas termiņš ir:
  • nākamais progresēšanas termiņš ir:

Apkoposim iepriekšējos un turpmākos progresēšanas nosacījumus:

Izrādās, ka iepriekšējo un nākamo progresijas nosacījumu summa ir starp tiem esošā progresijas vārda dubultā vērtība. Citiem vārdiem sakot, lai atrastu progresijas vārda vērtību ar zināmām iepriekšējām un secīgām vērtībām, tās ir jāpievieno un jādala ar.

Tieši tā, mums ir vienāds numurs. Nostiprināsim materiālu. Aprēķiniet progresa vērtību pats, tas nepavisam nav grūti.

Labi darīts! Jūs zināt gandrīz visu par progresu! Atliek noskaidrot tikai vienu formulu, kuru, saskaņā ar leģendu, viegli izsecināja viens no visu laiku izcilākajiem matemātiķiem, “matemātiķu karalis” - Karls Gauss...

Kad Kārlim Gausam bija 9 gadi, skolotājs, kas bija aizņemts, pārbaudot skolēnu darbu citās klasēs, klasē uzdeva šādu uzdevumu: "Aprēķiniet visu naturālo skaitļu summu no līdz (pēc citiem avotiem līdz) ieskaitot." Iedomājieties skolotāja pārsteigumu, kad viens no viņa audzēkņiem (tas bija Kārlis Gauss) minūti vēlāk sniedza pareizo atbildi uz uzdevumu, savukārt lielākā daļa pārdrošnieka klasesbiedru pēc ilgiem aprēķiniem saņēma nepareizu rezultātu...

Jaunais Karls Gauss pamanīja noteiktu modeli, ko arī jūs varat viegli pamanīt.
Pieņemsim, ka mums ir aritmētiskā progresija, kas sastāv no --ajiem vārdiem: Mums jāatrod šo aritmētiskās progresijas nosacījumu summa. Protams, mēs varam manuāli summēt visas vērtības, bet ja uzdevums prasa atrast tā terminu summu, kā to meklēja Gauss?

Attēlosim mums doto progresu. Uzmanīgi apskatiet izceltos skaitļus un mēģiniet ar tiem veikt dažādas matemātiskas darbības.


Vai esat to mēģinājuši? Ko jūs pamanījāt? Pareizi! Viņu summas ir vienādas


Tagad sakiet, cik mums dotajā progresijā kopumā ir šādu pāru? Protams, tieši puse no visiem skaitļiem, tas ir.
Pamatojoties uz to, ka aritmētiskās progresijas divu vārdu summa ir vienāda un līdzīgi pāri ir vienādi, mēs iegūstam, ka kopējā summa ir vienāda ar:
.
Tādējādi jebkuras aritmētiskās progresijas pirmo vārdu summas formula būs:

Dažās problēmās mēs nezinām th terminu, bet mēs zinām progresijas atšķirību. Mēģiniet aizstāt th termina formulu ar summas formulu.
ko tu dabūji?

Labi darīts! Tagad atgriezīsimies pie uzdevuma, kas tika uzdots Kārlim Gausam: pats aprēķiniet, ar ko ir vienāda skaitļu summa, sākot no th, un skaitļu summa, kas sākas no th.

Cik tu saņēmi?
Gauss atklāja, ka terminu summa ir vienāda, un terminu summa. Vai tā nolēmāt?

Faktiski aritmētiskās progresijas terminu summas formulu jau 3. gadsimtā pierādīja sengrieķu zinātnieks Diofants, un visu šo laiku asprātīgi cilvēki pilnībā izmantoja aritmētiskās progresijas īpašības.
Piemēram, iedomājieties Seno Ēģipti un tā laika lielāko būvprojektu - piramīdas būvniecību... Attēlā redzama viena puse.

Kur te ir progresija, jūs sakāt? Paskatieties uzmanīgi un atrodiet smilšu bloku skaitu katrā piramīdas sienas rindā.


Kāpēc ne aritmētiskā progresija? Aprēķiniet, cik bloku nepieciešams vienas sienas uzbūvēšanai, ja pie pamatnes ir likti bloku ķieģeļi. Es ceru, ka jūs neskaitīsit, pārvietojot pirkstu pa monitoru, atceraties pēdējo formulu un visu, ko mēs teicām par aritmētisko progresiju?

Šajā gadījumā progresēšana izskatās šādi: .
Aritmētiskās progresijas atšķirība.
Aritmētiskās progresijas terminu skaits.
Aizstāsim savus datus pēdējās formulās (bloku skaitu aprēķināsim divos veidos).

1. metode.

2. metode.

Un tagad jūs varat aprēķināt monitorā: salīdziniet iegūtās vērtības ar bloku skaitu, kas atrodas mūsu piramīdā. Vai sapratāt? Labi darīts, jūs esat apguvis aritmētiskās progresijas n-to vārdu summu.
Protams, jūs nevarat uzbūvēt piramīdu no blokiem pie pamatnes, bet no tā? Mēģiniet aprēķināt, cik smilšu ķieģeļu ir nepieciešams, lai izveidotu sienu ar šo nosacījumu.
Vai jums izdevās?
Pareizā atbilde ir bloki:

Apmācība

Uzdevumi:

  1. Maša iegūst formu vasarai. Katru dienu viņa palielina pietupienu skaitu par. Cik reizes Maša veiks pietupienus nedēļā, ja viņa veica pietupienus pirmajā treniņā?
  2. Kāda ir visu nepāra skaitļu summa, kas ietverta.
  3. Uzglabājot baļķus, mežizstrādātāji tos sakrauj tā, lai katrā augšējā slānī būtu par vienu baļķi mazāk nekā iepriekšējā. Cik baļķu ir vienā mūrī, ja mūra pamats ir baļķi?

Atbildes:

  1. Definēsim aritmētiskās progresijas parametrus. Šajā gadījumā
    (nedēļas = dienas).

    Atbilde: Divu nedēļu laikā Mašai reizi dienā jāveic pietupieni.

  2. Pirmais nepāra skaitlis, pēdējais skaitlis.
    Aritmētiskās progresijas atšķirība.
    Nepāra skaitļu skaits ir uz pusi, tomēr pārbaudīsim šo faktu, izmantojot formulu aritmētiskās progresijas biedra atrašanai:

    Cipari satur nepāra skaitļus.
    Aizstāsim pieejamos datus formulā:

    Atbilde: Visu nepāra skaitļu summa ir vienāda.

  3. Atcerēsimies problēmu par piramīdām. Mūsu gadījumā a , jo katrs virsējais slānis ir samazināts par vienu baļķi, tad kopā ir slāņu ķekars, tas ir.
    Aizstāsim datus formulā:

    Atbilde: Mūrē ir baļķi.

Apkoposim to

  1. - skaitļu secība, kurā starpība starp blakus esošajiem skaitļiem ir vienāda un vienāda. Tas var palielināties vai samazināties.
  2. Formulas atrašana Aritmētiskās progresijas th termiņu raksta ar formulu - , kur ir skaitļu skaits progresijā.
  3. Aritmētiskās progresijas locekļu īpašība- - kur ir progresējošo skaitļu skaits.
  4. Aritmētiskās progresijas vārdu summa var atrast divos veidos:

    , kur ir vērtību skaits.

ARITMĒTISKĀ PROGRESIJA. VIDĒJS LĪMENIS

Skaitļu secība

Apsēdīsimies un sāksim rakstīt dažus skaitļus. Piemēram:

Jūs varat rakstīt jebkurus ciparus, un to var būt tik daudz, cik vēlaties. Bet mēs vienmēr varam pateikt, kurš ir pirmais, kurš otrais un tā tālāk, tas ir, mēs varam tos numurēt. Šis ir skaitļu virknes piemērs.

Skaitļu secība ir skaitļu kopa, katram no kuriem var piešķirt unikālu numuru.

Citiem vārdiem sakot, katru skaitli var saistīt ar noteiktu naturālu skaitli un unikālu. Un mēs nepiešķirsim šo numuru nevienam citam numuram no šī komplekta.

Skaitli ar skaitli sauc par secības th locekli.

Mēs parasti saucam visu secību ar kādu burtu (piemēram,), un katrs šīs secības dalībnieks ir viens un tas pats burts ar indeksu, kas vienāds ar šī elementa numuru: .

Tas ir ļoti ērti, ja secības th var norādīt ar kādu formulu. Piemēram, formula

nosaka secību:

Un formula ir šāda secība:

Piemēram, aritmētiskā progresija ir secība (pirmais vārds šeit ir vienāds, un atšķirība ir). Vai (, atšķirība).

n-tā termina formula

Mēs saucam par atkārtotu formulu, kurā, lai uzzinātu th terminu, jums jāzina iepriekšējais vai vairāki iepriekšējie:

Lai, piemēram, atrastu progresijas th terminu, izmantojot šo formulu, mums būs jāaprēķina iepriekšējie deviņi. Piemēram, ļaujiet tam. Pēc tam:

Nu, vai tagad ir skaidrs, kāda ir formula?

Katrā rindā mēs pievienojam, reizinot ar kādu skaitli. Kuru? Ļoti vienkārši: šis ir pašreizējā dalībnieka numurs mīnus:

Tagad daudz ērtāk, vai ne? Mēs pārbaudām:

Izlemiet paši:

Aritmētiskajā progresijā atrodiet n-tā vārda formulu un simto daļu.

Risinājums:

Pirmais termiņš ir vienāds. Kāda ir atšķirība? Lūk, kas:

(Tāpēc to sauc par atšķirību, jo tā ir vienāda ar secīgu progresijas nosacījumu starpību).

Tātad, formula:

Tad simtais loceklis ir vienāds ar:

Kāda ir visu naturālo skaitļu summa no līdz?

Saskaņā ar leģendu, izcilais matemātiķis Karls Gauss, būdams 9 gadus vecs zēns, šo summu aprēķināja dažu minūšu laikā. Viņš pamanīja, ka pirmā un pēdējā skaitļa summa ir vienāda, otrā un priekšpēdējā summa ir vienāda, trešā un 3. summa no beigām ir vienāda un tā tālāk. Cik tādu pāru kopumā ir? Tieši tā, tieši puse no visu skaitļu skaita, tas ir. Tātad,

Jebkuras aritmētiskās progresijas pirmo vārdu summas vispārējā formula būs:

Piemērs:
Atrodiet visu divciparu reizinājumu summu.

Risinājums:

Pirmais šāds skaitlis ir šis. Katru nākamo skaitli iegūst, pievienojot iepriekšējam skaitlim. Tādējādi mūs interesējošie skaitļi veido aritmētisko progresiju ar pirmo biedru un starpību.

Šīs progresēšanas termiņa formula:

Cik terminu ir progresijā, ja tiem visiem ir jābūt divciparu skaitlim?

Ļoti viegli:.

Pēdējais progresēšanas termiņš būs vienāds. Tad summa:

Atbilde:.

Tagad izlemiet paši:

  1. Katru dienu sportists noskrien vairāk metru nekā iepriekšējā dienā. Cik kopā kilometrus viņš noskries nedēļā, ja pirmajā dienā noskrēja km m?
  2. Velosipēdists katru dienu nobrauc vairāk kilometru nekā iepriekšējā dienā. Pirmajā dienā viņš nobrauca km. Cik dienas viņam jābrauc, lai nobrauktu kilometru? Cik kilometrus viņš nobrauks pēdējā ceļojuma dienā?
  3. Ledusskapja cena veikalā katru gadu samazinās par tādu pašu summu. Nosakiet, cik daudz ledusskapja cena samazinājās katru gadu, ja, laists pārdošanā par rubļiem, pēc sešiem gadiem tas tika pārdots par rubļiem.

Atbildes:

  1. Šeit vissvarīgākais ir atpazīt aritmētisko progresiju un noteikt tās parametrus. Šajā gadījumā (nedēļas = dienas). Jums ir jānosaka šīs progresēšanas pirmo nosacījumu summa:
    .
    Atbilde:
  2. Šeit ir dots: , jāatrod.
    Acīmredzot jums ir jāizmanto tā pati summas formula kā iepriekšējā uzdevumā:
    .
    Aizstāt vērtības:

    Sakne acīmredzami neder, tāpēc atbilde ir.
    Aprēķināsim pēdējās dienas laikā noieto ceļu, izmantojot th termina formulu:
    (km).
    Atbilde:

  3. Ņemot vērā:. Atrast: .
    Tas nevar būt vienkāršāk:
    (berzēt).
    Atbilde:

ARITMĒTISKĀ PROGRESIJA. ĪSUMĀ PAR GALVENĀM LIETĀM

Šī ir skaitļu secība, kurā starpība starp blakus esošajiem skaitļiem ir vienāda un vienāda.

Aritmētiskā progresija var palielināties () un samazināties ().

Piemēram:

Formula aritmētiskās progresijas n-tā vārda atrašanai

tiek uzrakstīts pēc formulas, kur ir progresējošo skaitļu skaits.

Aritmētiskās progresijas locekļu īpašība

Tas ļauj viegli atrast progresijas terminu, ja ir zināmi tā blakus vārdi - kur ir progresijas skaitļu skaits.

Aritmētiskās progresijas terminu summa

Ir divi veidi, kā atrast summu:

Kur ir vērtību skaits.

Kur ir vērtību skaits.

PĀRĒJIE 2/3 RAKSTI IR PIEEJAMI TIKAI YOUCLEVER STUDENTIEM!

Kļūsti par YouClever studentu,

Sagatavojies vienotajam valsts eksāmenam vai vienotajam valsts eksāmenam matemātikā par cenu “tase kafijas mēnesī”,

Un arī iegūstiet neierobežotu piekļuvi mācību grāmatai “YouClever”, sagatavošanas programmai “100gia” (risinātāju grāmatai), neierobežotam izmēģinājuma Vienotajam valsts eksāmenam un Vienotajam valsts eksāmenam, 6000 problēmu ar risinājumu analīzi un citiem YouClever un 100gia pakalpojumiem.