Звуковые волны. Источники звука. Характеристики звука (Ерюткин Е. С.). SA Звуковые волны Какими основными физическими величинами характеризуется звук

ЛЕКЦИЯ 3 АКУСТИКА. ЗВУК

1. Звук, виды звука.

2. Физические характеристики звука.

3. Характеристики слухового ощущения. Звуковые измерения.

4. Прохождение звука через границу раздела сред.

5. Звуковые методы исследования.

6. Факторы, определяющие профилактику шума. Защита от шума.

7. Основные понятия и формулы. Таблицы.

8. Задачи.

Акустика. В широком смысле - раздел физики, изучающий упругие волны от самых низких частот до самых высоких. В узком смысле - учение о звуке.

3.1. Звук, виды звука

Звук в широком смысле - упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле - явление, субъективно воспринимаемое органами слуха человека и животных.

В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц. Однако с возрастом верхняя граница этого диапазона уменьшается:

Звук с частотой ниже 16-20 Гц называется инфразвуком, выше 20 кГц-ультразвуком, а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц - гиперзвуком.

Звуки, встречающиеся в природе, разделяют на несколько видов.

Тон - это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Простой тон создается телом, колеблющимся по гармоническому закону (например, камертоном). Сложный тон создается периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум - это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов (шелест листьев).

Звуковой удар - это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона - это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре (ν) соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте: 2ν, 3ν, 4ν, ...

Обычно наибольшая амплитуда спектра соответствует основному тону. Именно он воспринимается ухом как высота звука (см. ниже). Обертоны создают «окраску» звука. Звуки одной и той же высоты, созданные разными инструментами, воспринимаются ухом по-разному именно из-за различного соотношения между амплитудами обертонов. На рисунке 3.1 показаны спектры одной и той же ноты (ν = 100 Гц), взятой на рояле и кларнете.

Рис. 3.1. Спектры ноты рояля (а) и кларнета (б)

Акустический спектр шума является сплошным.

3.2. Физические характеристики звука

1. Скорость (v). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в газе зависит от его молярной массы (М) и абсолютной температуры (Т):

Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

2. Звуковое давление. Распространение звука сопровождается изменением давления в среде (рис. 3.2).

Рис. 3.2. Изменение давления в среде при распространении звука.

Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса, как возникновение слуховых ощущений.

Звуковое давление (ΔΡ) - это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.

3. Интенсивность звука (I). Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука - это плотность потока энергии, переносимой звуковой волной (см. формулу 2.5).

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. При использовании волноводов можно добиться и увеличения интенсивности. Типичным примером такого волновода в живой природе является ушная раковина.

Связь между интенсивностью (I) и звуковым давлением (ΔΡ) выражается следующей формулой:

где ρ - плотность среды; v - скорость звука в ней.

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

Для уха среднего человека на частоте 1 кГц порогу слышимости соответствуют следующие значения звукового давления (ΔΡ 0) и интенсивности звука (I 0):

ΔΡ 0 = 3х10 -5 Па (≈ 2х10 -7 мм рт.ст.); I 0 = 10 -12 Вт/м 2 .

Значения звукового давления и интенсивности звука, при которых у человека возникают выраженные болевые ощущения, называются порогом болевого ощущения.

Для уха среднего человека на частоте 1 кГц порогу болевого ощущения соответствуют следующие значения звукового давления (ΔΡ m) и интенсивности звука (I m):

4. Уровень интенсивности (L). Отношение интенсивностей, соответствующих порогам слышимости и болевого ощущения, столь велико (I m /I 0 = 10 13), что на практике используют логарифмическую шкалу, вводя специальную безразмерную характеристику - уровень интенсивности.

Уровнем интенсивности называют десятичный логарифм отношения интенсивности звука к порогу слышимости:

Единицей измерения уровня интенсивности является бел (Б).

Обычно используют более мелкую единицу уровня интенсивности - децибел (дБ): 1 дБ = 0,1 Б. Уровень интенсивности в децибелах вычисляется по следующим формулам:

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 10 дБ.

Характеристики часто встречающихся звуков приведены в табл. 3.1.

Если человек слышит звуки, приходящие с одного направления от нескольких некогерентных источников, то их интенсивности складываются:

Высокий уровень интенсивности звука приводит к необратимым изменениям в слуховом аппарате. Так, звук в 160 дБ может вызвать разрыв барабанной перепонки и смещение слуховых косточек в среднем ухе, что приводит к необратимой глухоте. При 140 дБ человек ощущает сильную боль, а продолжительное действие шума в 90-120 дБ приводит к поражению слухового нерва.

Лабораторная работа №5

Аудиометрия

Студент должен знать : что называется звуком, природу звука, источники звука; физические характеристики звука (частота, амплитуда, скорость, интенсивность, уровень интенсивности, давление, акустический спектр); физиологические характеристики звука (высота, громкость, тембр, минимальная и максимальная частоты колебаний, воспринимаемые данным человеком, порог слышимости, порог болевого ощущения) их связь с физическими характеристиками звука; слуховой аппарат человека, теории восприятия звука; коэффициент звукоизоляции; акустический импеданс, поглощение и отражение звука, коэффициенты отражения и проникновения звуковых волн, реверберация; физические основы звуковых методов исследования в клинике, понятие об аудиометрии.

Студент должен уметь: с помощью звукового генератора снимать зависимость порога слышимости от частоты; определять минимальную и максимальную, воспринимаемые Вами частоты колебаний, снимать аудиограмму с помощью аудиометра.

Краткая теория

Звук. Физические характеристики звука.

Звуком называются механические волны с частотой колебаний частиц упругой среды от 20 Гц до 20000 Гц, воспринимаемые человеческим ухом.



Физическими называют те характеристики звука, которые существуют объективно. Они не связаны с особенностями ощущения человеком звуковых колебаний. К физическим характеристикам звука относятся частота, амплитуда колебаний, интенсивность, уровень интенсивности, скорость распространения звуковых колебаний, звуковое давление, акустический спектр звука, коэффициенты отражения и проникновения звуковых колебаний и др. Кратко рассмотрим их.

1. Частота колебаний . Частотой звуковых колебаний называется число колебаний частиц упругой среды (в которой распространяются звуковые колебания) в единицу времени. Частота звуковых колебаний лежит в пределах 20 - 20000 Гц. Каждый конкретный человек воспринимает определенный диапазон частот (обычно несколько выше 20 Гц и ниже 20000 Гц).

2. Амплитудой звукового колебания называется наибольшее отклонение колеблющихся частиц среды (в которой распространяется звуковое колебание) от положения равновесия.

3. Интенсивностью звуковой волны (или силой звука ) называется физическая величина, численно равная отношению энергии, переносимой звуковой волной в единицу времени через единицу площади поверхности, ориентированной перпендикулярно вектору скорости звуковой волны, то есть:

где W - энергия волны, t - время переноса энергии через площадку площадью S .

Единица интенсивности: [I ] = 1Дж/(м 2 с) = 1Вт/м 2 .

Обратим внимание на то, что энергия и соответственно интенсивность звуковой волны прямо пропорциональны квадрату амплитуды «А » и частоты «ω » звуковых колебаний:

W ~ A 2 и I ~ A 2 ; W ~ ω 2 и I ~ ω 2 .

4. Скоростью звука называется скорость распространения энергии звукового колебания. Для плоской гармонической волны фазовая скорость (скорость распространения фазы колебания (фронта волны), например, максимума или минимума, т.е. сгустка или разряжения среды) равна скорости волны. Для сложного колебания (по теореме Фурье можно представить в виде суммы гармонических колебаний) вводится понятие групповой скорости – скорость распространения группы волн, с которой переносится энергия данной волной.

Скорость звука в любой среде можно найти по формуле:

где Е - модуль упругости среды (модуль Юнга), r - плотность среды.

С увеличением плотности среды (например, в 2 раза) модуль упругости Е возрастает в большей степени (более чем в 2 раза), поэтому с увеличением плотности среды скорость звука возрастает. Например, скорость звука в воде равна ≈ 1500 м/с, в стали - 8000 м/с.

Для газов формулу (2) можно преобразовать и получить в следующем виде:

(3)

где g = С Р / С V - отношение молярных или удельных теплоемкостей газа при постоянном давлении (С Р ) и при постоянном объеме (С V ).

R - универсальная газовая постоянная (R=8,31 Дж/моль·К );

Т - абсолютная температура по шкале Кельвина (T=t o C+273 );

М - молярная масса газа (для нормальной смеси газов воздуха

М=29×10 -3 кг/моль ).

Для воздуха при Т=273К и нормальном атмосферном давлении скорость звука равна υ=331,5 » 332 м/с . Следует заметить, что интенсивность волны (векторная величина) часто выражают через скорость волны :

или ,(4)

где S×l - объем, u=W/ S×l - объемная плотность энергии. Вектор в уравнении (4) называют вектором Умова .

5. Звуковым давлением называется физическая величина, численно равная отношению модуля силы давления F колеблющихся частиц среды, в которой распространяется звук, к площади S перпендикулярно ориентированной площадки по отношению к вектору силы давления.

P = F/S [P ]= 1Н/м 2 = 1Па (5)

Интенсивность звуковой волны прямо пропорциональна квадрату звукового давления:

I = Р 2 /(2r υ) , (7)

где Р - звуковое давление, r - плотность среды, υ - скорость звука в данной среде.

6.Уровень интенсивности . Уровнем интенсивности (уровнем силы звука) называется физическая величина, численно равная:

L=lg(I/I 0) , (8)

где I - интенсивность звука, I 0 =10 -12 Вт/м 2 - наименьшая интенсивность, воспринимаемая человеческим ухом на частоте 1000 Гц.

Уровень интенсивности L , исходя из формулы (8), измеряют в белах (Б). L = 1 Б , если I=10I 0 .

Максимальная интенсивность, воспринимаемая человеческим ухом I max =10 Вт/м 2 , т.е. I max / I 0 =10 13 или L max =13 Б.

Чаще уровень интенсивности измеряют в децибелах (дБ ):

L дБ =10 lg(I/I 0) , L=1 дБ при I=1,26I 0 .

Уровень силы звука можно находить через звуковое давление.

Так как I ~ Р 2 , то L(дБ) = 10lg(I/I 0) = 10 lg(P/P 0) 2 = 20 lg(P/P 0) , где P 0 = 2×10 -5 Па (при I 0 =10 -12 Вт/м 2).

7.Тоном называется звук, являющийся периодическим процессом (периодические колебания источника звука совершаются не обязательно по гармоническому закону). Если источник звука совершает гармоническое колебание x=ASinωt , то такой звук называют простым или чистым тоном. Негармоническому периодическому колебанию соответствует сложный тон, который можно по теореме Фурьне представить в виде совокупности простых тонов с частотами n о (основной тон) и 2n о , 3n о и т.д., называемых обертонами с соответствующими амплитудами.

8.Акустическим спектром звука называется совокупность гармонических колебаний с соответствующими частотами и амплитудами колебаний, на которые можно разложить данный сложный тон. Спектр сложного тона линейчатый, т.е. частоты n о, 2n о и т.д.

9. Шумом (звуковым шумом) называют звук, который представляет собой сложные, неповторяющиеся во времени колебания частиц упругой среды. Шум представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума состоит практически из любых частот звукового диапазона, т.е. акустический спектр шума - сплошной.

Звук может быть и в виде звукового удара. Звуковой удар - это кратковременное (обычно интенсивное) звуковое воздействие (хлопок, взрыв и т.п.).

10.Коэффициенты проникновения и отражения звуковой волны. Важной характеристикой среды, определяющей отражение и проникновение звука является волновое сопротивление (акустический импеданс) Z=r υ , где r - плотность cреды, υ - скорость звука в среде.

Если плоская волна падает, например, нормально к границе раздела двух сред, то звук частично проходит во вторую среду, а часть звука отражается. Если падает звук интенсивностью I 1 , проходит - I 2 , отражается I 3 =I 1 - I 2 , то:

1) коэффициентом проникновения звуковой волны b называется b=I 2 /I 1 ;

2) коэффициентом отражения a называется:

a= I 3 /I 1 =(I 1 -I 2)/I 1 =1-I 2 /I 1 =1-b.

Релей показал, что b =

Если υ 1 r 1 = υ 2 r 2 , то b=1 (максимальное значение), при этом a=0 , т.е. отраженная волна отсутствует.

Если Z 2 >>Z 1 или υ 2 r 2 >> υ 1 r 1 , то b » 4 υ 1 r 1 / υ 2 r 2 . Так, например, если звук падает из воздуха в воду, то b=4(440/1440000)=0,00122 или 0,122% интенсивности падающего звука проникает из воздуха в воду.

11. Понятие о реверберации . Что представляет собой реверберация? В закрытом помещении звук многократно отражается от потолка, стен, пола и т. п. с постепенно уменьшающейся интенсивностью. Поэтому после прекращения действия источника звука в течение некоторого времени слышен звук за счет многократного отражения (гул).

Реверберацией называется процесс постепенного затухания звука в закрытых помещениях после прекращения излучения источником звуковых волн. Временем реверберации называется время, в течение которого интенсивность звука при реверберации снижается в 10 6 раз. При проектировании учебных аудиторий, концертных залов и т.п. учитывают необходимость получения определенного времени (интервала времени) реверберации. Так, например, для Колонного зала Дома Союзов и Большого театра г. Москвы время реверберации для пустых помещений соответственно равно 4,55 с и 2,05 с, для заполненных – 1,70 с и 1,55 с.

Цели:

  • Ввести понятие звуковых колебаний, выяснить характеристики и свойства звуковых колебаний.
  • Показать единство природы, взаимосвязь физики, биологии, музыки.
  • Воспитание бережного отношения к своему здоровью.

Оборудование: компьютер с мультимедиапроектором, камертон, линейка, зажатая в тисках, звуковой генератор.

План урока.

  1. Орг. Момент
  2. Изучение нового материала.
  3. Дом. Задание.

Человек живет в мире звуков. Что же такое звук? Как он возникает? Чем один звук отличается от другого? Сегодня на уроке мы с вами попробуем ответить на эти и многие другие вопросы, связанные со звуковыми явлениями.

Раздел физики, изучающий звуковые явления называется акустикой.

Упругие волны, способные вызвать у человека слуховые ощущения называются звуковыми.

Человеческое ухо способно воспринимать механические колебания, происходящие с частотой от 20 до 20000 Гц. (Демонстрация на звуковом генераторе волн с частотой от 20 до 20000 Гц)

Любое колеблющееся со звуковой частотой является источником звука. Но источниками звука могут не только колеблющиеся тела: полет пули в воздухе, сопровождается свистом, бурное течение воды – шумом.

Сам факт выделения из достаточно большого набора частот, называемых звуковыми, связан со свойством слуха человека воспринимать именно эти волны.

Различные живые существа имеют различные границы восприятия звука.

Все источники звука можно разделить на естественные и искусственные.

(демонстрации: звучание камертона и линейки зажатой между тисками.)

Рассмотрим свойства звука.

  1. Звук это продольная волна.
  2. Распространяется звук в упругих средах (воздух, вода, различные металлы)
  3. Звук имеет конечную скорость.
Вещество Температура 0 С Скорость звука м/с Вещество Температура 0 С Скорость звука м/с
Азот 300 487 Пары воды 100 405
Азот 0 334 Гелий 0 965
Азот жидкий -199 962 Графит 20 1470
Алюминий 20 18 350 Золото 20 3200
Алмаз 20 6260 Ртуть 20 1450
Бензин 17 1170 Спирт 20 1180
Вода 20 1483 Пары спирта 0 230
Вода 74 1555 Сталь 20 5000-6100
Лед -1-4 3980 Эфир 25 985

Давайте прослушаем сообщение о том, как были определены скорость звука в воде и других веществах.

(Сообщение учащихся)

Проверь себя.

  1. Часы установлены по звуку сигнала от удаленного радиоприемника. В каком случае часы будут установлены более точно: летом или зимой?
    (Летом, так как скорость звука в воздухе увеличивается с температурой)
  2. Могут ли космонавты при выходе в открытый космос общаться между собой при помощи звуковой речи?
    (На расстоянии нет, т.к. в космическом вакууме нет условий для распространения звуковых волн. Однако если космонавты соприкоснутся шлемами скафандров, они могут услышать друг друга.)
  3. Почему столбы линий электропередач гудят при ветре?
    (При ветре провода совершают хаотические колебательные движения, воздействуя на изоляторы, укрепленные на столбах. В столбах возбуждаются стоячие звуковые волны.)

Характеристики звука.

  1. Громкость звука.
  2. Высота звука
  3. Тембр звука.

Громкость звука – характеристика амплитуды звуковой волны.
(показать эксперимент с камертоном и генератором)

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда, тем громче звук.

Но если бы мы сравнивали звуки различных частот, то кроме амплитуды нам пришлось бы еще сравнивать и их частоты. При одинаковых амплитудах как более громкие мы воспринимаем частоты, которых лежат в пределах от 1000 до 5000 Гц.

Единица громкости звука называется сон.

В практических задачах громкость звука принято характеризовать уровнем громкости, измеряемым в фонах , или уровнем звукового давления , измеряемых в белах (Б) или децибелах (дБ), составляющих десятую часть бела.

Тихий шепот, шелест листвы - 20 дБ

Обычная речь - 60 дБ

Рок-концерт - 120 дБ

При увеличении громкости на 10дБ интенсивность звука увеличивается в 10 раз.

Задача: Рассчитайте во сколько раз интенсивность звука на рок -концерте больше обычной речи?

(1000000 раз)

Громкость, равную 120 дБ, называют болевым порогом. При длительном воздействии такого звука происходит необратимое ухудшение слуха: человек, привыкший к рок - концертам уже никогда не услышит тихий шепот или шелест листьев.

Высота звука – характеристика частоты звуковой волны, чем больше частота колебаний источника звука, тем выше издаваемый им звук.

Кто в полете быстрее машет крыльями – муха, шмель или комар?

Частота колебаний крыльев насекомых и птиц в полете, Гц

Аисты 2
Бабочки- капустницы до 9
Воробьи до 13
Вороны 3-4
Жуки майские 45
Колибри 35-50
Комары 500-600
Мухи комнатные 190-330
Пчелы 200-250
Шмель 220
Слепни 100
Стрекозы 38-100

Каких птиц и насекомых мы слышим, а каких нет?

У какого насекомого самый высокий звук? (У комара)

Частота звуковых колебаний, соответствующих человеческому голосу, составляет от 80 до 1400 Гц.

При увеличении частоты в 2 раза звук повышается на октаву – именно из этих соображений и была выбрана октава. Каждая октава делится на 12 интервалов в полтона каждая.

Тембр звука определяется формой звуковых колебаний.

Мы знаем, что ветви камертона совершают гармонические (синусоидальные) колебания. Таким колебаниям присуща только одна строго определенная частота. Гармонические колебания являются самым простым видом колебаний. Звук камертона является чистым тоном.

Чистым тоном называется звук источника, совершающего гармонические колебания одной частоты.

Звуки от других источников (например, звуки различных музыкальных инструментов, голоса людей, звук сирены и многие другие) представляют собой совокупность гармонических колебаний разных частот, т. е. совокупность чистых тонов.

Самая низкая (т. е. самая малая) частота такого сложного звука называется основной частотой , а соответствующий ей звук определенной высоты - основным тоном (иногда его называют просто тоном). Высота сложного звука определяется именно высотой его основного тона.

Все остальные тоны сложного звука называются обертонами . Частоты всех обертонов данного звука в целое число раз больше частоты его основного тона (поэтому их называют также высшими гармоническими тонами).

Обертоны определяют тембр звука, т. е. такое его качество, которое позволяет нам отличать звуки одних источников от звуков других. Например, мы легко отличаем звук рояля от звука скрипки даже в том случае, если эти звуки имеют одинаковую высоту, т.е. одну и ту же частоту основного тона. Отличие этих звуков обусловлено разным набором обертонов (совокупность обертонов различных источников может отличаться количеством обертонов, их амплитудами, сдвигом фаз между ними, спектром частот).

Проверь себя.

  1. Как по звуку можно отличить работает дрель вхолостую или под нагрузкой?
  2. Чем музыкальные звуки отличаются от шума?
    (Шум отличается от музыкального тона тем, что ему не соответствует какая-либо определенная высота звука. В шуме присутствуют колебания всевозможных частот и амплитуд.)
  3. Проекция скорости одной из точек звучащей струны виолончели меняется со временем так, как показано на графике. Определите частоту колебаний проекции скорости.

Человек обладает таким уникальным органом как ухо – приемник звука. Давайте рассмотрим, как человек слышит.

Звуковые волны, распространяющиеся в воздухе, проделывают сложный путь, прежде чем мы воспримем их. Сначала они проникают в ушную раковину и заставляют вибрировать барабанную перепонку, замыкающую наружный слуховой проход. Слуховые косточки доносят эти колебания до овального окна внутреннего уха. Пленка, которая закрывает окно, передает вибрации, заполняющей улитку жидкости. Наконец колебания достигают слуховых клеток внутреннего уха. Головной мозг воспринимает эти сигналы и распознает шумы, звуки, музыку, речь.

Одна из важнейших характеристик голоса его тембр, т.е. набор спектральных линий, среди которых можно вы делить пики, состоящие из нескольких обертонов,- так называемые форманты. Именно форманты определяют секрет индивидуального звучания голоса и позволяют распознавать речевые звуки, так как у разных людей форманты даже одного и того же звука отличаются по частоте, ширине и интенсивности. Тембр голоса строго индивидуален, поскольку в процессе звукообразования важную роль играют специфические для каждого индивидуума резонаторные полости глотки, носа, околоносовых пазух и т.д. Неповторимость человеческого голоса можно сравнить лишь с неповторимостью узора отпечатков пальцев. Во многих странах мир, магнитофонная запись человеческого голоса считается неоспоримым юридическим документом, подделать который не возможно

Спектры голосов певцов отличаются от спектра голос обычного человека: в них сильно выражена высокая певческая форманта, т.е. обертоны с частотами 2500-3000 Гц, придающие голосу звонкий оттенок. У выдающихся певцов они составляют в спектре до 35 и более процентов (рис. слева), в то время как у опытных - 15-30%, а у начинающих - 3-5% (рис., справа).

Принято выделять три разновидности голосов для обоих полов: у мужчин - бас, баритон, тенор; у женщин - альт, меццо-сопрано и сопрано. Это разделение является в большей степени искусственным: оно не учитывает большое количество “промежуточных” голосов, так как пока нет объективного метода оценки качества голоса из-за безграничного сочетания его свойств.

Рассматривая звуковые колебания нельзя не обратить, внимание на влияние шумов на организм человека.

Длительное воздействие шумов на человека приводит к повреждению центральной нервной системы, повышению кровяного и внутричерепного давления, нарушению нормальной работы сердца, головокружению. Вредное воздействие сильных шумов на человека было замечено давно. Еще 2000 лет назад в Китае в качестве наказания заключенные подвергались непрерывному воздействию звуков флейт, барабанов и крикунов, пока не падали замертво. При мощности шума 3 кВт и частоте 800 Гц нарушается способность глаза к фокусировке. Мощность шума 5-8кВт дезорганизует работу скелетной мускулатуры, вызывает паралич, потерю памяти. Мощность шума около 200кВт приводит к смерти. Поэтому в больших городах запрещено использование резких и громких сигналов. Значительно снижают шумы деревья, кустарники, которые их поглощают. Поэтому вдоль дорог с интенсивным автомобильным движением необходимы зеленые насаждения. Тишина значительно повышает остроту слуха.

Д/З §34-38 упр. 31(1), упр.32 (2,3) практическое задание: определение зависимости высоты тона от частоты колебаний, используя кусочек резиновой нити.

Закончить урок мне хочется вот такими словами. У Н. Рериха есть картина, названная им “Человеческие праотцы”. Юный пастушок играет на свирели, и со всех сторон сходятся к нему большие бурые медведи. Что влечет их? Музыка? Легенда говорит, что предками некоторых славянских племен были медведи. Думается, идут они услышать самую чудесную музыку на свете – голос доброго человеческого сердца.

Литература:

  1. А. В. Перышкин, Е. М. Гутник Физика 9 класс Дрофа 2003г.
  2. С. В. Громов, Н. А. Родина Физика 8 класс М. Просвещение 2001г.
  3. В. Н. Мощанский Физика 9 класс М. Просвещение 1994г.
  4. А. В. Аганов, Р.К. Сафиуллин, А. И. Скворцов, Д.А. Таюрский Физика вокруг нас. Качественные задачи по физике.М. Дом педагогики 1998 г.
  5. С. А. Чандаева Физика и человек.М. АО Аспект Пресс 1994 г.
  6. Естествознание в школе № 1 2004 г

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СВЯЗИ, ИНФОРМАТИЗАЦИИ И ТЕЛЕКОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ РЕСПУБЛИКИ УЗБЕКИСТАН

ТАШКЕНТСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

ФАКУЛЬТЕТ ТЕЛЕВИЗИОННЫХ ТЕХНОЛОГИЙ

по предмету: Основы физики

на тему: Физические параметры звука

Подготовил:

Шишков Дмитрий

Ташкент, 2015 год

Введение

2.1 Скорость звука

3. Эффект Доплера

4. Ультразвук

5. Инфразвук

Заключение

Введение

Мы живем в мире информации, и главная ее часть проходит через глаза и слух человека. Согласно исследованиям физиологов визуальная информация занимает первое место, но и слуховая не менее важна.

Мы живем в мире звуков, это и музыка и шумы разной природы, и речь, и музыка. Поэтому надо знать природу звука, уравнения и законы, которые описывают его распространения и поглощения в различных средах. Это необходимо знать людям различных профессий: музыкантам и строителям, звукорежиссерам и архитекторам, биологам и геологам, сейсмологам, военным. Все они имеют дело с различными сторонами практического распространения звука в разных средах.

Распространение звука в помещениях, „звучание” помещений важно для строителей, музыкантов. За звуковыми сигналами сейчас исследуют пути миграций перелетных птиц биологи, находят косяки рыб в океане рыбаки. Геологи с помощью ультразвука исследуют земную кору в поисках новых месторождений полезных ископаемых. Сейсмологи, изучая распространение звуков в земле, учатся предсказывать землетрясения и цунами. Для военных большое значение имеет профиль корпусов военных кораблей и подводных лодок, ведь это влияет на скорость движения корабля и на издаваемый им шум, который для подводных лодок должен быть минимальным, всем этим и обусловлена актуальность моей работы. Развитие физики и математики сделало возможным рассчитать все это. Поэтому звуковые явления были выделены в отдельную науку, которая получила название акустики.

Целью моей работы является рассмотрение основных законов и правил распространения звука в различных средах, виды звуковых колебаний и их применение в науке и технике.

1. Природа звука и ультразвуковой волны

Сначала рассмотрим природу звуковых колебаний. Как известно из физики источником любых колебаний: звуковых, электромагнитных есть волна. Упругие волны, которые распространяются в сплошных средах, называют звуковыми.

К звуковым волнам принадлежат волны, частоты которых лежит в пределах восприятия органами слуха. Человек воспринимает звуки тогда, когда на его органы слуха действуют волны с частотами от 16 до 20 000 Гц. Упругие волны, частота которых меньше 16 Гц, называют инфразвуковыми, а волны, частота которых лежит в интервале от 2 Ч 104 до 1 Ч 109 Гц - ультразвуковыми.

Раздел физики, в котором изучаются звуковые волны (их возбуждение, распространение, восприятие и взаимодействие их с препятствиями и веществом среды) называют акустикой.

Любой колебательный процесс описывается уравнением. Выведено оно и для звуковых колебаний:

Развитие техники позволило проводить и визуальное наблюдение звука. Для этого используют специальные датчики и микрофоны и наблюдают звуковые колебания на экране осциллографа.

2. Основные характеристики звуковых волн

2.1 Скорость звука

К основным характеристикам звуковых волн относят скорость звука, его интенсивность - это объективные характеристики звуковых волн, высоту тона, громкость относят к субъективным характеристикам. Субъективные характеристики зависят в большой мере от восприятия звука конкретным человеком, а не от физических характеристик звука.

Измерение скорости звука в твердых телах, жидкостях и газах указывают на то, что скорость не зависит от частоты колебаний или длины звуковой волны, т. е., для звуковых волн не характерна дисперсия. В твердых телах могут распространяться продольные и поперечные волны, скорость распространения которых находят с помощью формул:

где Е - модуль Юнга, G - модуль сдвига в твердых телах. В твердых телах скорость распространения продольных волн почти в два раза больше чем скорость распространения поперечных волн.

В жидкостях и газах могут распространяться лишь продольные волны. Скорость звука в воде находят за формулой:

K - модуль объемного сжатия вещества.

В жидкостях при возрастании температуры скорость звука возрастает, что связано с уменьшением коэффициента объемного сжатия жидкости.

Для газов выведена формула, которая связывает их давление с плотностью:

Впервые эту формулу для нахождения скорости звука в газах использовал И. Ньютон. Из формулы видно, что скорость распространения звука в газах не зависит от температуры, она также не зависит от давления, поскольку при возрастании давления возрастает и плотность газа. Формуле можно придать и более рациональный вид: на основе уравнения Менделеева-Клапейрона:

Тогда скорость звука будет равна:

Формула носит название формулы Ньютона. Рассчитанная с ее помощью скорость звука в воздухе составляет при 273К 280 м/с. Реальная же экспериментальная скорость составляет 330 м/с.

Этот результат значительно отличается от теоретического и причину этого установил Лаплас.

Он показал, что распространение звука в воздухе происходит адиабатно. Звуковые волны в газах распространяются так быстро, что, что созданные локальные изменения объема и давления в газовой среде происходят без теплообмена с окружающей средой. Лаплас вывел уравнение для нахождения скорости звука в газах:

2.2 Распространение звуковых волн

В процессе распространения звуковых волн в среде происходит их затухание. Амплитуда колебаний частиц среды постепенно уменьшается при возрастании расстояния от источника звука.

Одной из основных причин затухания волн есть действие сил внутреннего трения на частицы среды. На преодоление этих сил непрерывно используется механическая энергия колебательного движения, что переносится волной. Эта энергия превращается в энергию хаотического теплового движения молекул и атомов среды. Поскольку энергия волны пропорциональна квадрату амплитуды колебаний, то прираспространении волн от источника звука вместе с уменьшением запаса энергии колебательного движения уменьшается и амплитуда колебаний.

На распространение звуков в атмосфере влияет много факторов: температура на разных высотам, потоки воздуха. Эхо - это отраженный от поверхности звук. Звуковые волны могут отражаться от твердых поверхностей, от слоев воздуха в которых температура отличается от температуры соседних слоев.

3. Эффект Доплера

Для сравнения интенсивности L звука или звукового давления используют уровень интенсивности. Уровнем интенсивности называют умноженный на 10 логарифм отношений двух интенсивностей звука. Величина L измеряется в децибелах:

Для указания абсолютного уровня интенсивности вводят стандартный порог слышимости І0 человеческого уха на частоте 1000 Гц, по отношению к которому указывается интенсивность. Порог слышимости равен:

В таблице представлены интенсивности различных природных и техногенных звуков и их интенсивности.

Объективные характеристики звука. Любое тело, которое находится в упругой среде и колеблеться со звуковой частотой, является источником звука. Источника звука можно поделить на две группы: источники, которые работают на собственной частоте, и источники, которые работают на вынужденных частотах. К первой группе принадлежат источники, звуки в которых создаются колебаниями струн, камертонов, воздушных столбов в трубах. Ко второй группе источников звука принадлежат телефоны. Способность тел излучать звук зависит от размера их поверхности. Чем большая площадь поверхности тела, тем лучше оно излучает звук. Так, натянутая между двумя точками струна или камертон создают звук довольно малой интенсивности. Для усиления интенсивности звука струн и камертонов их объединяют с резонаторными ящиками, которым присущий ряд резонансных частот. Звучание струнных и духовых музыкальных инструментов основано на образовании стоящих волн в струнах и воздушных столбах. Интенсивность звука, который создается источником, зависит не только от его характеристик, а и от помещения, в котором находится этот источник. После прекращения действия источника звука рассеянный звук не исчезает внезапно. Это объясняется отбиванием звуковых волн от стен помещения. Время, на протяжении которого после прекращения действия источника звук полностью исчезает, называют временами реверберации. Условно считают, что время реверберации равняется промежутку времени, на протяжении которого интенсивность звука уменьшится в миллион раз.

Время реверберации - это важная характеристика акустических свойств концертных залов, кинозалов, аудиторий и др. При большом времени реверберации музыка звучат довольно громко, но невыразительно. При малом времени реверберации музыка звучат слабо и глухо. Поэтому в каждом конкретном случае добиваются наиболее оптимальных акустических характеристик помещений.

Субъективные характеристики звука. Человек ощущает звуки, которые лежат в диапазоне частот от 16 Гц до 20 кГц. Чувствительность органов слуха человека до разных частот неодинаковая. Для того, чтобы человек реагировал на звук, необходимо, чтобы его интенсивность была не меньше минимальной величины, которая носит название порога слышимости. Порог слышимости для разных частот неодинаковый. Людское ухо имеет наибольшую чувствительность к колебаниям частотой от 1 до 3 кГц. Порог слышимости для этих частот составляет около Дж/м. кв. с. При значительном возрастании интенсивности звука ухо перестает воспринимать колебания как звук. Такие колебания вызывают ощущение боли.

Наибольшую интенсивность звука, при которой человек воспринимает колебания как звук, называют порогом болевого ощущения.

Порог болевых ощущений при указанных частотах отвечает интенсивности звука 1 Дж/м. кв. с.

Звук как физическое явление характеризируют частотой, интенсивностью или звуковым давлением, набором частот. Это объективные характеристики звука. Органы слуха человека воспринимают звукза громкостью, высотой тона, тембром. Эти характеристики имеют субъективный характер.

Диаграмма на которой представлены области частот и интенсивности, воспринимаемые человеческим ухом, называют диаграммой слуха. Физическому понятию интенсивности звука отвечает громкость звука. Субъективную громкость звука нельзя точно количественно измерить.

Высота звука определяется его частотой, чем больше частота, тем большим будет высота звука. Органы слуха человека довольно точно ощущают изменение частоты. В области частот 2 кГц может воспринимать два тона, частота которых отличается на 3-6 Гц. Тембр звука определяется его спектральных составом. Тембр - это оттенок сложного звука, которым отличаются два звука одинаковой силы и высоты.

4. Ультразвук

Как уже отмечалось, упругие волны, частоты которых лежат в интервале от 104 до 109 Гц, называют ультразвуком. Весь диапазон частот ультра звуковых волн условно разделяют на три поддиапазона: ультразвуковые волны низких (104-105 Гц), средних (105-107 Гц) и высоких частот (107-109 Гц). За физической природой ультразвуковые волны такие, как и звуковые волны любой длинны. Тем не менее, вследствие более высоких частот ультразвук имеет ряд специфических особенностей при его распространении. В связи с тем, что длины ультразвуковых волн довольно малые, характер их распространения определяется в первую очередь молекулярными свойствами вещества.

Характерная особенность распространения ультразвука в многоатомных газах и в жидкостях - это существование интервалов длин волн, в пределах которых проявляется зависимость фазовой скорости распространения волн от их частоты, т. е., имеет место дисперсия звука. В этих интервалах длинны волн также происходит значительное поглощение ультразвука. Поэтому при распространении его в воздухе происходит более значительное его затухание, чем звуковых волн. В жидкостях и твердых телах (особенно монокристалах) затухание ультразвука значительно меньше. Поэтому область применения ультразвука средних и высоких частот лежит в основном в жидких и твердых средах, а в воздухе и в газах применяют только ультразвук низких частот.

Еще одна особенность ультразвука - это возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, поскольку при определенной амплитуде плотность потока энергии пропорциональная квадрату частоты.

До важных явлений, которые возникают в жидкостях при прохождении ультразвука, принадлежит кавитация.

Это получение кратковременных импульсов давления при схлопывании пузырьков воздуха.

Для получения ультра звуковых волн используют механические и электромеханические приборы. К механическим можно отнести воздушные и жидкостные сирены и свистки. Многие вещества могут генерировать ультразвук при помещении их в высокочастотное электрическое поле, к таким веществам относят кварц, сегнетовую соль, титанат бария. Ультразвук используют во многих областях знаний, науке и технике. Его используют для изучения свойств и строения вещества. С его помощью получают информацию о строении морского дна, его глубине, находят косяки рыб в океане. Ультра звуковые волны могут проникать через металлические изделия толщиной около 10 метров. Это их свойство положено в основу принципа работы ультра звукового дефектоскопа, который помогает находить дефекты и трещины в твердых телах. В медицине это свойство ультразвука положено в основу работы приборов ультразвуковой диагностики, которые позволяют визуализировать внутренние органы, диагностировать болезни на ранних стадиях.

Действие ультразвуковых колебаний непосредственно на расплавы дает возможность получить более однородную структуру металлов. Ультразвуковая кавитация применяется для очищения от грязи поверхностей деталей (часовое производство, приборостроение, электронная техника и др.). На основе кавитации осуществляется металлизация тел и пайка, дегазация жидкостей. Кавитационные ударные волны могут диспергировать твердые тела и жидкости, образовывая эмульсии и суспензии.

5. Инфразвук

Инфразвуки - это упругие колебания, аналогичные звуковым колебанием, но с частотами ниже 20 Гц. Инфразвуки на первый взгляд занимают небольшой диапазон частот от 20 до 0 Гц. На самом деле этот участок чрезвычайно большой, поскольку «к нулю» означает практически бесконечный диапазон колебаний. Этот диапазон менее изучен сравнительно со звуковым и ультразвуковым диапазонами. Инфразвуковые волны возникают вследствие обдувания ветром зданий, деревьев, телеграфных столбов, металлических ферм, во время движения человека, животные, транспорта, при работе разных механизмов, при грозовых разрядах, взрывах бомб, выстрелах пушек. В земной коре наблюдаются колебание и вибрации инфразвуковых частот вследствие обвалов, движения разных видов транспорта, вулканических извержений и т. п.

Другими словами, мы живем в мире инфразвуков, не подозревая об этом. Такие звуки человек скорее ощущает, чем чует. Зарегистрировать инфразвуки можно только особыми приборами. Характерной особенностью инфразвука есть незначительное его поглощения в разных средах. Вследствие этого инфразвуковые волны в воздухе, воде и земной коре могут распространяться на довольно большие расстояния (десятки тысяч километров). В связи с этим инфразвук образно называют «акустическим нейтрино». Так, инфразвуковые волны (частота колебаний 0,1 Гц), что образовались при извержении вулкана Кракатау (Индонезия) в 1883 г., несколько раз обошли вокруг земного шара. Они вызвали такие флюктуации давления, которые можно было зарегистрировать обычными барометрами.

Некоторые инфразвуки человек воспринимает, но не органами слуха, а организмом в целом. Дело в том, что некоторые внутренние органы человека имеют собственную резонансную частоту колебаний 6-8 Гц. При действии инфразвука этой частоты возможное возникновение резонанса колебаний этих органов, который вызывает неприятные ощущения.

Исследованиями ученых разные страны установлены, что инфразвук любых частот и интенсивности представляет собой реальную угрозу для здоровья человека. Полученные результаты дают возможность сделать вывод, что инфразвук приводит к потере чувствительности органов равновесия тела, которое в свою очередь приводит к появлению боли в ушах, позвоночнике и повреждений мозга. Еще более пагубно влияет инфразвук на психику человека. Свойство ультразвуковых колебаний распространяться на большие расстояния в земной коре лежит в основе сейсмологии - науки, которая изучает землетрясения и исследует внутреннее строение Земли.

Кроме океанологии и сейсмологии, инфразвук применяют в работе некоторых приборов и механизмов для разных практических целей. С помощью таких приборов стараются предусмотреть землетрясения, приближение цунами.

Заключение

физический механический ультразвук

Человек живет в океане звука, он обменивается информацией с помощью звука, воспринимает ее от окружающих его людей. Поэтому знать основные характеристики звука, его подвиды и их использование просто необходимо. Использование звуковых и ультра звуковых волн находит все большее применение в жизни человека. Их используют в медицине и технике, на их использовании основаны многие приборы, особенно для исследования морей и океанов. Где из-за сильного поглощения радиоволн звуковые и ультра звуковые колебания есть единственным способ передачи информации. Как было сказано выше человек живет в океане звука и нам также не нужно забывать и о чистоте этого океана. Сильные шумы опасны для здоровья человека и могут привести к сильным головным болям, расстройству координации движения. Поэтому нужно с уважением относится к столь сложному и интересному явлению, каким есть звук.

Список использованной литературы

1. Дущенко В.П., Кучерук И.М. Общая физика. - К.: Высшая школа, 1995. - 430 с.

2. Исакович М.А.Общая акустика. - М.: Наука, 1973. - 495 с.

3. Зисман Г.А., Тодес О. М. Курс общей физики. В 3 т. - М.: Наука, 1995. - 343 с.

4. Клюкин И.И. Удивительный мир звука. - Л.: Судостроение, 1978. - 166 с.

5. Кухлинг Х. Справочник по физике: Пер. с нем. - М.: Мир, 1983. - 520 с.

6. Лепендин Л.Ф. Акустика. - М.: Высшая школа, 1978. - 448 с.

7. Яворский Б.М., Детлаф А.А. Справочник по физике. - М.: Наука, 1982. - 846 с.

8. Шебалин О.Д. Физические основы механики и акустики. - М.: Высшая школа, 1981. - 263 с.

Размещено на Allbest.ru

...

Подобные документы

    Звуковые волны и природа звука. Основные характеристики звуковых волн: скорость, распространение, интенсивность. Характеристика звука и звуковые ощущения. Ультразвук и его использование в технике и природе. Природа инфразвуковых колебаний, их применение.

    реферат , добавлен 04.06.2010

    Природа звука, физические характеристики и основы звуковых методов исследования в клинике. Частный случай механических колебаний и волн. Звуковой удар и кратковременное звуковое воздействие. Звуковые измерения: ультразвук, инфразвук, вибрация и ощущения.

    реферат , добавлен 09.11.2011

    Что такое звук. Распространение механических колебаний среды в пространстве. Высота и тембр звука. Сжатие и разрежение воздуха. Распространение звука, звуковые волны. Отражение звука, эхо. Восприимчивость человека к звукам. Влияние звуков на человека.

    реферат , добавлен 13.05.2015

    Распространение звуковых волн в атмосфере. Зависимость скорости звука от температуры и влажности. Восприятие звуковых волн ухом человека, частота и сила звука. Влияние ветра на скорость звука. Особенность инфразвуков, ослабление звука в атмосфере.

    лекция , добавлен 19.11.2010

    Колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых ухом. Объективные, субъективные характеристики звука. Звуковые методы исследования в клинике. Положение пальцев при перкуссии.

    презентация , добавлен 28.05.2013

    Параметры упругих гармонических волн. Уравнения плоской и сферической волн. Уравнение стоячей волны. Распространение волн в однородной изотропной среде и принцип суперпозиции. Интервалы между соседними пучностями. Скорость распространения звука.

    презентация , добавлен 18.04.2013

    Типы волн и их отличительные особенности. Понятие и исследование параметров упругих волн: уравнения плоской и сферической волн, эффект Доплера. Сущность и характеристика стоячих волн. Явление и условия наложения волн. Описание звуковых и стоячих волн.

    презентация , добавлен 24.09.2013

    Изучение механизма работы человеческого уха. Определение понятия и физических параметров звука. Распространение звуковых волн в воздушной среде. Формула расчета скорости звука. Рассмотрение числа Маха как характеристики безразмерной скорости течения газа.

    реферат , добавлен 18.04.2012

    Звук как источник информации. Причина и источники звука. Амплитуда колебаний в звуковой волне. Необходимые условия распространения звуковых волн. Длительность звучания камертона на резонаторе и без него. Использование в технике эхолокации и ультразвука.

    презентация , добавлен 15.02.2011

    Природа звука и его источники. Основы генерации компьютерного звука. Устройства ввода-вывода звуковых сигналов. Интенсивность звука как энергетическая характеристика звуковых колебаний. Распределение скорости звука. Затухающие звуковые колебания.

Основные характеристики звука

Скорость звука в воздухе равняется 332,5 м/с при 0°С. При комнатной температуре (20°С) скорость звука составляет около 340 м/с. Скорость звука обозначается символом «с ».

Частота. Звуки, воспринимаемые слуховым анализатором человека, образуют диапазон звуковых частот. Принято считать, что данный диапазон ограничен частотами от 16 до 20000 Гц. Эти границы весьма условны, что связано с индивидуальными особенностями слуха, возрастными изменениями чувствительности слухового анализатора (с возрастом верхняя граница слышимых частот падает до 14–16 кГц) и т.д. Это довольно широкий диапазон, перекрывающий три декады (диапазон частот с отношением максимальной частоты к минимальной равным 10). Из музыки к нам пришла и другая мера измерения диапазона частот звуковых колебаний – октава (отношение крайних частот диапазона равное 2).

Физическое понятие звука охватывает как слышимые, так и неслышимые частоты колебаний. Звуковые волны с частотой ниже 16 Гц условно называют инфразвуковыми, выше 20 кГц – ультразвуковыми. Инфразвуковые и ультразвуковые колебания ощущения звука у человека не вызывают.

Область инфразвуковых колебаний снизу практически не ограничена – в природе встречаются инфразвуковые колебания с частотой в десятые и сотые доли Гц. Частоты порядка 20 Гц и ниже мы не столько слышим ухом, сколько воспринимаем телом и даже нашими внутренними органами. При этом когда такие частоты приближаются к частотам колебаний внутренних органов человека, они способны вызвать тревогу, чувство страха, эйфорию, а при достаточной силе звука привести даже к смертельному исходу. Заметим, что при этом человек не слышит эти звуки и не отдает себе отчет о причинах возникновения этих чувств.

Существует достаточно обоснованное мнение, что и ультразвуковые колебания всœе же влияют на ощущения человека при прослушивании музыкальных произведений, поскольку оказывают заметное влияние на форму звуковых волн, в связи с этим наиболее совершенные акустические системы способны воспроизводить ультразвуковые колебания с частотами до 35–50 кГц, а иногда и выше.

Интенсивность звука (Вт/м 2) определяется количеством энергии, переносимой волной за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны. Ухо человека воспринимает звук в весьма широком интервале интенсивности: от самых слабых слышимых звуков до самых громких, к примеру создаваемых двигателœем реактивного самолета.

Минимальная интенсивность звука, при которой возникает слуховое чувство, принято называть порогом слухового восприятия . Он зависит от частоты звука (рис. 124). Наибольшей чувствительностью к звуку человеческое ухо обладает в диапазоне частот от 1 до 4 кГц, соответственно и порог слухового восприятия здесь имеет наименьшее значение 10 –12 Вт/м 2 . Эта величина принята за нулевой уровень слышимости. При действии шумов и других звуковых раздражений порог слышимости для данного звука повышается (маскировка звука – физиологический феномен, заключающийся в том, что при одновременном восприятии двух или нескольких звуков разной громкости более тихие звуки перестают быть слышимыми), причем повышенное значение сохраняется неĸᴏᴛᴏᴩᴏᴇ время после прекращения действия отвлекающего фактора, а затем постепенно возвращается к исходному уровню. Порог слышимости может изменяться в зависимости от возраста͵ физиологического состояния, тренированности слушателя.

Рис. 124. Частотная зависимость стандартного порога слышимости синусоидального сигнала

Звуки высокой интенсивности вызывают чувство давящей боли в ушах. Минимальная интенсивность звука, при которой возникает чувство давящей боли в ушах, принято называть порогом болевого ощущения . Так же, как и порог слухового восприятия, порог болевого ощущения зависит от частоты звуковых колебаний (рис. 124). Звуки, интенсивность которых приближается к болевому порогу, оказывают вредное воздействие на слух.

Нормальное восприятие звука возможно, если интенсивность звука находится между порогом слышимости и болевым порогом.

Слуховой анализатор человека способен к восприятию огромного динамического диапазона. Изменения в давлении воздуха, вызываемые самыми тихими из воспринимаемых на слух звуков, составляют порядка 2×10 –5 Па. В то же время звуковое давление с уровнем, приближающимся к порогу болевых ощущений для наших ушей, составляет порядка 20 Па. В итоге динамический диапазон (соотношение между самыми тихими и самыми громкими звуками, которые может воспринимать наш слуховой аппарат) – 1:1000000. Измерять такие разные по уровню сигналы в линœейной шкале неудобно.

С целью сжатия такого широкого динамического диапазона было введено понятие «бел». Бел - ϶ᴛᴏ простой логарифм отношения двух степеней, а децибел равен 0,1 бела.

Чтобы выразить акустическое давление в децибелах, крайне важно возвести давление (в паскалях) в квадрат и разделить его на квадрат эталонного давления. Для удобства возведение в квадрат двух давлений выполняется вне логарифма (свойство логарифмов).

Для преобразования акустического давления в децибелы применяется формула:

где P – интересующее нас акустическое давление, P 0 – исходное давление.

Оценку звука удобно проводить по уровню (L ) интенсивности (звукового давления), рассчитываемому по формуле:

где J 0 порог слухового восприятия, J – интенсивность звука (табл. 10).

Таблица 10

Характеристика оценки звука по уровню интенсивности относительно порога слухового восприятия

Характеристика звука Интенсивность, Вт/м 2 Уровень интенсивности относительно порога слухового восприятия, дБ
Порог слухового восприятия 10 –12
Тоны сердца, генерируемые через стетоскоп 10 –11
Шепот 10 –10 –10 –9 20–30
Речевые звуки при спокойной беседе 10 –7 –10 –6 50–60
Шум, связанный с интенсивным движением транспорта 10 –5 –10 –4 70–80
Шум, создаваемый концертом рок-музыки 10 –3 –10 –2 90–100
Шум вблизи работающего двигателя самолета 0,1–1,0 110–120
Порог болевого ощущения

Представим связь между децибелами и обычными относительными единицами измерения отмеченных параметров (данные приведены для К = 20) (табл. 11).