Счетчики импульсов электронный 4 х разрядный схема. Применяем калькулятор в качестве счетчика импульсов для разных устройств. Описание работы счетчика CD4026

Принцип действия

В качестве исходного состояния принят нулевой уровень на всех выходах триггеров (Q 1 – Q 3), т. е. цифровой код 000. При этом старшим разрядом является выход Q 3 . Для перевода всех триггеров в нулевое состояние входы R триггеров объединены и на них подается необходимый уровень напряжения (т. е. импульс, обнуляющий триггеры). По сути это сброс. На вход С поступают тактовые импульсы, которые увеличивают цифровой код на единицу, т. е. после прихода первого импульса первый триггер переключается в состояние 1 (код 001), после прихода второго импульса второй триггер переключается в состояние 1, а первый – в состояние 0 (код 010), потом третий и т. д. В результате подобное устройство может досчитать до 7 (код 111), поскольку 2 3 – 1 = 7. Когда на всех выходах триггеров установились единицы, говорят, что счетчик переполнен. После прихода следующего (девятого) импульса счетчик обнулится и начнется все с начала. На графиках изменение состояний триггеров происходит с некоторой задержкой t з. На третьем разряде задержка уже утроенная. Увеличивающаяся с увеличением числа разрядов задержка является недостатком счетчиков с последовательным переносом, что, несмотря на простоту, ограничивает их применение в устройствах с небольшим числом разрядов.

Классификация счётчиков

Счетчиками называют устройства для подсчёта числа поступивших на их вход импульсов (команд), запоминания и хранения результата счёта и выдачи этого результата. Основным параметром счётчика является модуль счёта(емкость) Kс. Эта величина равна числу устойчивых состояний счётчика. После поступления импульсов Kс счётчик возвращается в исходное состояние. Для двоичных счётчиков Kс = 2 m, где m – число разрядов счётчика.

Кроме Kс важными характеристиками счётчика являются максимальная частота счёта fmax и время установления tуст, которые характеризуют быстродействие счётчика.

Tуст – длительность переходного процесса переключения счётчика в новое состояние: tуст = mtтр, где m – число разрядов, а tтр – время переключения триггера.

Fmax – максимальная частота входных импульсов, при которой не происходит потери импульсов.

По типу функционирования:

– Суммирующие;

– Вычитающие;

– Реверсивные.

В суммирующем счётчике приход каждого входного импульса увеличивает результат счёта на единицу, в вычитающем – уменьшает на единицу; в реверсивных счётчиках может происходить как суммирование, так и вычитание.

По структурной организации:

– последовательными;

– параллельными;

– последовательно-параллельными.

В последовательном счётчике входной импульс подаётся только на вход первого разряда, на входы каждого последующего разряда подаётся выходной импульс предшествующего ему разряда.

В параллельном счётчике с приходом очередного счётного импульса переключение триггеров при переходе в новое состояние происходит одновременно.

Последовательно-параллельная схема включает в себя оба предыдущих варианта.

По порядку изменения состояний:

– с естественным порядком счёта;

– с произвольным порядком счёта.

По модулю счёта:

– двоичные;

– недвоичные.

Модуль счёта двоичного счётчика Kc=2, а модуль счёта недвоичного счётчика Kc= 2m, где m – число разрядов счётчика.

Суммирующий последовательный счётчик

Рис.1. Суммирующий последовательный 3х разрядный счётчик.

Триггеры данного счетчика срабатывают по заднему фронту счетного импульса. Вход старшего разряда счетчика связан с прямым выходом (Q) младшего соседнего разряда. Временная диаграмма работы такого счетчика приведена на рис.2. В начальный момент времени состояния всех триггеров равны лог.0, соответственно на их прямых выходах лог.0. Это достигается посредством кратковременного лог.0, поданного на входы асинхронной установки триггеров в лог.0. Общее состояние счетчика можно охарактеризовать двоичным числом (000). Во время счёта на входах асинхронной установки триггеров в лог.1 поддерживается лог.1. После прихода заднего фронта первого импульса 0-разряд переключается в противоположное состояние – лог.1. На входе 1-разряда появляется передний фронт счетного импульса. Состояние счетчика (001). После прихода на вход счетчика заднего фронта второго импульса 0-разряд переключается в противоположное состояние – лог.0, на входе 1-разряда появляется задний фронт счетного импульса, который переключает 1-разряд в лог.1. Общее состояние счетчика – (010). Следующий задний фронт на входе 0-разряда установит его в лог.1 (011) и т.д. Таким образом, счетчик накапливает число входных импульсов, поступающих на его вход. При поступлении 8-ми импульсов на его вход счетчик возвращается в исходное состояние (000), значит коэффициент счета (КСЧ) данного счетчика равен 8.

Рис. 2. Временная диаграмма последовательного суммирующего счетчика.

Вычитающий последовательный счётчик

Триггеры данного счетчика срабатывают по заднему фронту. Для реализации операции вычитания счетный вход старшего разряда подключается к инверсному выходу соседнего младшего разряда. Предварительно триггеры устанавливают в состояние лог.1 (111). Работу данного счетчика показывает временная диаграмма на рис. 4.

Рис. 1 Последовательный вычитающий счетчик

Рис. 2 Временная диаграмма последовательного вычитающего счетчика

Реверсивный последовательный счётчик

Для реализации реверсивного счетчика необходимо объединить функции суммирующего счетчика и функции вычитающего счетчика. Схема данного счетчика приведена на рис. 5. Для управления режимом счета служат сигналы «сумма» и «разность». Для режима суммирования «сумма»=лог.1, «0»-кратковременный лог.0; «разность»=лог.0, «1»-кратковременный лог.0. При этом элементы DD4.1 и DD4.3 разрешают подачу на тактовые входы триггеров DD1.2, DD2.1 через элементы DD5.1 и DD5.2 сигналов с прямых выходов триггеров DD1.1, DD1.2 соответственно. При этом элементы DD4.2 и DD4.4 закрыты, на их выходах присутствует лог.0, поэтому действие инверсных выходов никак не отражается на счетных входах триггеров DD1.2, DD2.1. Таким образом, реализуется операция суммирования. Для реализации операции вычитания на вход «сумма» подается лог.0, на вход «разность» лог.1. При этом элементы DD4.2, DD4.4 разрешают подачу на входы элементов DD5.1, DD5.2, а соответственно и на счетные входы триггеров DD1.2, DD2.1 сигналов с инверсных выходов триггеров DD1.1, DD1.2. При этом элементы DD4.1, DD4.3 закрыты и сигналы с прямых выходов триггеров DD1.1, DD1.2 никак не воздействуют на счетные входы триггеров DD1.2, DD2.1. Таким образом, реализуется операция вычитания.

Рис. 3 Последовательный реверсивный 3-х разрядный счетчик

Для реализации данных счетчиков также можно использовать триггеры, срабатывающие по переднему фронту счетных импульсов. Тогда при суммировании на счетный вход старшего разряда надо подавать сигнал с инверсного выхода соседнего младшего разряда, а при вычитании наоборот – соединять счетный вход с прямым выходом.

Недостаток последовательного счетчика – при увеличении разрядности пропорционально увеличивается время установки (tуст) данного счетчика. Достоинством является простота реализации.

Рис. 3 – Реверсивный счетчик

Для счетных импульсов предусмотрены два входа: “+1” – на увеличение, “-1” – на уменьшение. Соответствующий вход (+1 или -1) подключается ко входу С. Это можно сделать схемой ИЛИ, если влепить ее перед первым триггером (выход элемента ко входу первого триггера, входы – к шинам +1 и -1). Непонятная фигня между триггерами (DD2 и DD4) называется элементом И-ИЛИ. Этот элемент составлен из двух элементов И и одного элемента ИЛИ, объединенных в одном корпусе. Сначала входные сигналы на этом элементе логически перемножаются, потом результат логически складывается.

Число входов элемента И-ИЛИ соответствует номеру разряда, т. е. если третий разряд, то три входа, четвертый – четыре и т. д. Логическая схема является двухпозиционным переключателем, управляемым прямым или инверсным выходом предыдущего триггера. При лог. 1 на прямом выходе счетчик отсчитывает импульсы с шины “+1” (если они, конечно, поступает), при лог. 1 на инверсном выходе – с шины “-1”. Элементы И (DD6.1 и DD6.2) формируют сигналы переноса. На выходе >7 сигнал формируется при коде 111 (число 7) и наличии тактового импульса на шине +1, на выходе <0 сигнал формируется при коде 000 и наличии тактового импульса на шине -1.

Все это, конечно, интересно, но красивей смотрится в микросхемном исполнении:

Рис. 4 Четырехразрядный двоичный счетчик

Вот типичный счетчик с предустановкой. СТ2 означает, что счетчик двоичный, если он десятичный, то ставится СТ10, если двоично-десятичный – СТ2/10. Входы D0 – D3 называются информационными входами и служат для записи в счетчик какого-либо двоичного состояния. Это состояние отобразится на его выходах и от него будет производится начало отсчета. Другими словами, это входы предварительной установки или просто предустановки. Вход V служит для разрешения записи кода по входам D0 – D3, или, как говорят, разрешения предустановки. Этот вход может обозначаться и другими буквами. Предварительная запись в счетчик производится при подаче сигнала разрешения записи в момент прихода импульса на вход С. Вход С тактовый. Сюда запихивают импульсы. Треугольник означает, что счетчик срабатывает по спаду импульса. Если треугольник повернут на 180 градусов, т. е. задницей к букве С, значит он срабатывает по фронту импульса. Вход R служит для обнуления счетчика, т. е. при подаче импульса на этот вход на всех выходах счетчика устанавливаются лог. 0. Вход PI называется входом переноса. Выход p называется выходом переноса. На этом выходе формируется сигнал при переполнении счетчика (когда на всех выходах устанавливаются лог. 1). Этот сигнал можно подать на вход переноса следующего счетчика. Тогда при переполнении первого счетчика второй будет переключаться в следующее состояние. Выходы 1, 2, 4, 8 просто выходы. На них формируется двоичный код, соответствующий числу поступивших на вход счетчика импульсов. Если выводы с кружочками, что бывает намного чаще, значит они инверсные, т. е. вместо лог. 1 подается лог. 0 и наоборот. Более подробно работа счетчиков совместно с другими устройствами будет рассматриваться в дальнейшем.

Параллельный суммирующий счётчик

Принцип действия данного счетчика заключается в том, что входной сигнал, содержащий счетные импульсы, подается одновременно на все разряды данного счетчика. А установкой счетчика в состояние лог.0 или лог.1 управляет схема управления. Схема данного счетчика показана на рис.6

Рис. 4 Суммирующий счетчик параллельного действия

Разряды счетчика – триггеры DD1, DD2, DD3.

Схема управления – элемент DD4.

Достоинство данного счетчика – малое время установки, не зависящее от разрядности счетчика.

Недостаток – сложность схемы при повышении разрядности счетчика.

Счетчики с параллельным переносом

Для повышения быстродействия применяют способ одновременного формирования сигнала переноса для всех разрядов. Достигается это введением элементов И, через которые тактовые импульсы поступают сразу на входы всех разрядов счетчика.

Рис. 2 – Счетчик с параллельным переносом и графики, поясняющие его работу

С первым триггером все понятно. На вход второго триггера тактовый импульс пройдет только тогда, когда на выходе первого триггера будет лог. 1 (особенность схемы И), а на вход третьего – когда на выходах первых двух будет лог. 1 и т. д. Задержка срабатывания на третьем триггере такая же, как и на первом. Такой счетчик называется счетчиком с параллельным переносом. Как видно из схемы, с увеличением числа разрядов увеличивается число лог. элементов И, причем чем выше разряд, тем больше входов у элемента. Это является недостатком таких счетчиков.

Разработка принципиальной схемы

Формирователь импульсов

Формирователь импульсов – устройство, необходимое для устранения дребезга контактов, возникающего при замыкании механических контактов, который может привести к неправильной работе схемы.

На рисунке 9 приведены схемы формирователей импульсов от механических контактов.

Рис. 9 Формирователи импульсов от механических контактов.

Блок индикации

Для отображения результата счёта необходимо использовать светодиоды. Чтобы осуществить такой вывод информации можно воспользоваться простейшей схемой. Схема блока индикации на светодиодах приведена на рисунке 10.

Рис. 10 Блок индикации на светодиодах.

Разработка КСУ (комбинационной схемы управления)

Для реализации данного счётчика из серии ТТЛШ микросхем К555 я выбрал:

две микросхемы К555ТВ9 (2 JK-триггера с установкой)

одну микросхему К555ЛА4 (3 элемента 3И-НЕ)

две микросхемы К555ЛА3 (4 элемента 2И-НЕ)

одну микросхему К555ЛН1 (6 инверторов)

Данные микросхемы обеспечивают минимальное количество корпусов на печатной плате.

Составление структурной схемы счётчика

Структурная схема – совокупность блоков счётчика, выполняющих какую-либо функцию и обеспечивающих нормальную работу счётчика. На рисунке 7 показана структурная схема счётчика.

Рис. 7 Структурная схема счётчика

Блок управления выполняет функцию подачи сигнала и управления триггерами.

Блок счёта предназначен для изменения состояния счетчика и сохранения этого состояния.

Блок индикации выводит информацию для зрительного восприятия.

Составление функциональной схемы счётчика

Функциональная схема – внутренняя структура счётчика.

Определим оптимальное количество триггеров для недвоичного счётчика с коэффициентом счёта Кс=10.

M = log 2 (Кс) = 4.

M = 4 значит для реализации двоично-десятичного счётчика необходимо 4 триггера.

Простейшие одноразрядные счетчики импульсов

Простейшим одноразрядным счетчиком импульсов может быть JK-триггер и D-триггер, работающий в счетном режиме. Он считает входные импульсы по модулю 2-каждый импульс переключает триггер в противоположное состояние. Один триггер считает до двух, два соединенных последовательно считают до четырех, п триггеров-до 2n импульсов. Результат счета формируется в заданном коде, который может храниться в памяти счетчика или быть считанным другим устройством цифровой техники-дешифратором.

На рисунке показана схема трехразрядного двоичного счетчика импульсов, построенного на JK-триггер ax K155TB1. Смонтируйте такой счетчик на макетной панели и к прямым выходам триггеров подключите светодиодные (или транзисторные - с лампой накаливания) индикаторы, как это делали ранее. Подайте от испытательного генератора на вход С первого триггера счетчика серию импульсов с частотой следования 1 … 2 Гц и по световым сигналам индикаторов постройте графики работы счетчика.

Если в начальный момент все триггеры счетчика находились в нулевом состоянии (можно установить кнопочным выключателем SB1 «Уст.0», подавая на вход R триггеров напряжение низкого уровня), то по спаду первого же импульса (рис. 45,6) триггер DD1 переключится в единичное состояние-на его прямом выходе появится высокий уровень напряжения (рис. 45,в). Второй импульс переключит триггер DD1 в нулевое состояние, а триггер DD2-B единичное (рис. 45,г). По спаду третьего импульса триггеры DD1 и DD2 окажутся в единичном состоянии, а триггер DD3 все еще будет в нулевом. Четвертый импульс переключит первые два триггера в нулевое состояние, а третий в единичное (рис. 45,д). Восьмой импульс переключит все триггеры в нулевое состояние. По спаду девятого входного импульса начнется следующий цикл работы трехразрядного счетчика импульсов.

Изучая графики, нетрудно заметить, что каждый старший разряд счетчика отличается от младшего удвоенным числом импульсов счета. Так, период импульсов на выходе первого триггера в 2 раза больше периода входных импульсов, на выходе второго триггера - в 4 раза, на выходе третьего триггера - в 8 раз. Говоря языком цифровой техники, такой счетчик работает в весовом коде 1-2-4. Здесь под термином «вес» имеется в виду объем информации, принятой счетчиком после установки его триггеров в нулевое состояние. В устройствах и приборах цифровой техники наибольшее распространение получили четырехразрядные счетчики импульсов, работающие в весовом коде 1-2-4-8. Делители частоты считают входные импульсы до некоторого задаваемого коэффициентом счета состояния, а затем формируют сигнал переключения триггеров я нулевое состояние, вновь начинают счет входных импульсов до задаваемого коэффициента счета и т. д.

На рисунке показаны схема и графики работы делителя с коэффициентом счета 5, построенного на JK-триггерах Здесь уже знакомый вам трехразрядный двоичный счетчик дополнен логическим элементом 2Й-НЕ DD4.1, который и задает коэффициент счета 5. Происходит это так. При первых четырех входных импульсах (после установки триггеров в нулевое состояние кнопкой SB1 «Уст. 0») устройство работает как обычный двоичный счетчик импульсов. При этом на одном или обоих входах элемента DD4.1 действует низкий уровень напряжения, поэтому элемент находится в единичном состоянии.

По спаду же пятого импульса на прямом выходе первого и третьего триггеров, а значит, и на обоих входах элемента DD4.1 появляется высокий уровень напряжения, переключающий этот логический элемент а нулевое состояние. В этот момент на его выходе формируется короткий импульс низкого уровня, который через диод VD1 передается на вход R всех триггеров и переключает их в исходное нулевое состояние.

С этого момента начинается следующий цикл работы счетчика. Резистор R1 и диод VD1, введенные в этот счетчик, необходимы для того, чтобы исключить замыкание выхода элемента DD4.1 на общий провод.

Действие такого делителя частоты можете проверить, подавая на вход С первого его триггера импульсы, следующие с частотой 1… 2 Гц, и подключив к выходу триггера DD3 световой индикатор.

На практике функции счетчиков импульсов и делителей частоты выполняют специально разработанные микросхемы повышенной степени интеграции. В серии К155, например, это счетчики К155ИЕ1, К155ИЕ2, К155ИЕ4 и др.

В радиолюбительских разработках наиболее широко используют микросхемы К155ИЕ1 и К155ИЕ2. Условные графические обозначения этих микросхем-счетчиков с нумерацией их выводов показаны на рис. 47.

Микросхему К155ИЕ1 (рис. 47,а) называют декадным счетчиком импульсов, т. е. счетчиком с коэффициентом счета 10. Он содержит четыре триггера, соединенных между собой последовательно. Выход (вывод 5) микросхемы - выход ее четвертого триггера. Устанавливают все триггеры в нулевое состояние подачей напряжения высокого уровня одновременно на оба входа R (выводы 1 и 2), объединенные по схеме элемента И (условный символ «&»). Счетные импульсы, которые должны иметь низкий уровень, можно подавать на соединенные вместе входы С (выводы 8 и 9), также объединенные по И. или на один из них, если в это время на втором будет высокий уровень напряжения. При каждом десятом входном импульсе на выходе счетчик формирует равный по длительности входному импульс низкого уровня. Микросхема К155ИЕ2 (рис.48,б)

Двоично-десятичный четырехразрядный счетчик. В нем также четыре триггера, но первый из них имеет отдельные вход С1 (вывод 14) и отдельный прямой выход (вывод 12). Три других триггера соединены между собой так, что образуют делитель на 5. При соединении выхода первого триггера (вывод 12) со входом С2 (вывод 1) цепи остальных триггеров микросхема становится делителем на 10 (рис. 48, а), работающем в коде 1-2-4-8, что и символизируют цифры у выходов графического обозначения микросхемы. Для установки триггеров счетчика в нулевое состояние подают на оба входа R0 (выводы 2 и 3) напряжение высокого уровня.

Два объединенных входа R0 и четыре разделительных выхода микросхемы К155ИЕ2 позволяют без дополнительных элементов строить делители частоты с коэффициентами деления от 2 до 10. Так, например, если соединить между собой выводы 12 и 1, 9 и 2, 8 н 3 (рис. 48,6), то коэффициент счета будет 6, а при соединении выводов 12 и 1, 11,. 2 и 3 (рис. 48,в) коэффициент счета станет 8. Эта особенность микросхемы К155ИЕ2 позволяет использовать ее и как двоичный счетчик импульсов, и как делитель частоты.

Цифровой счетчик импульсов – это цифровой узел, который осуществляет счет поступающих на его вход импульсов. Результат счета формируется счетчиком в заданном коде и может храниться требуемое время. Счетчики строятся на триггерах, при этом количество импульсов, которое может подсчитать счетчик определяется из выражения N = 2 n – 1, где n – число триггеров, а минус один, потому что в цифровой технике за начало отсчета принимается 0. Счетчики бывают суммирующие, когда счет идет на увеличение, и вычитающие – счет на уменьшение. Если счетчик может переключаться в процессе работы с суммирования на вычитание и наоборот, то он называется реверсивным.

Из типовых функциональных узлов цифровой техники нетрудно собрать электронный счетчик-секундомер, аналогичный тем, которые выпускаются для школьных физических кабинетов. В этих приборах используется счетно-импульсный метод измерения времени, который состоит в том, что измеряется число импульсов, период повторения которых известен. Подобные приборы содержат следующие основные узлы: генератор счетных импульсов, схему управления (в простейшем случае ее роль выполняет кнопка «Пуск»), двоично-десятичный счетчик, дешифраторы и индикаторы. Последние три узла образуют пересчетную декаду, моделирующую один десятичный разряд. Нужно заметить, что измерение времени счетно-импульсным методом сопровождается неизбежной ошибкой, равной единице счета. Связано это с тем, что прибор зафиксирует одинаковое число импульсов и, следовательно, покажет одинаковое время, если счет прекращен сразу же после поступления последнего импульса или перед самым поступлением предыдущего импульса. В этом случае ошибка примет наибольшее значение, равное времени между двумя соседними

Рис. 172. Пересчетная декада

импульсами. Если уменьшить период повторения импульсов и ввести дополнительные разряды счетчика, то можно в нужное число раз повысить точность измерения.

Одна декада счетчика-секундомера показана на рисунке 172. Она состоит из двоично-десятичного счетчика на дешифратора на и индикатора на неоновой лампе Для питания индикатора нужно высокое напряжение , поэтому по правилам техники безопасности прибором должен пользоваться руководитель. В схеме используется дешифратор, специально предназначенный для работы с высоковольтным индикатором. Вместо лампы можно использовать лампы других типов: рассчитанные на напряжение питания 200 В и силу тока индикации Микросхема состоит из триггера со счетным входом (вход и триггерного делителя на 5 (вход При соединении выхода счетного триггера (выхрд 1) с входом делителя образуется двоично-десятичный счетчик. Он реагирует на задний фронт положительного импульса или на отрицательный скачок напряжения, поданного на вход . В условных обозначениях счетный фронт иногда показывается в виде стрелки, направленной к Микросхеме, если она реагирует на положительный скачок напряжения, или стрелки, направленной от микросхемы, если она реагирует на отрицательный перепад напряжения.

Для управления работой счетной декады используется три кнопки и переключатель. Перед началом счета декада

устанавливается в нулевое состояние кнопкой «Уст. О», при этом на входы счетчика подается логическая 1. Затем переключателем выбирается источник счетных импульсов - им может быть или триггер, или мультивибратор. В режиме «счет механических замыканий» при последовательном нажатии и отпускании кнопки происходит двоично-десятичный счет и на индикаторе последовательно загораются цифры 1, 2, 3 и т. д. до цифры 9, затем загорается цифра 0 и счет повторяется. В режиме счета импульсов на вход счетчика поступают импульсы мультивибратора, собранного по уже известной схеме на рис. 168). Для измерения времени в секундах частота импульсов должна равняться 1 Гц. Она устанавливается переменным резистором и емкостью равной

Для получения многоразрядного двоично-десятичного счетчика включаются последовательно, т.е. выход первого соединяется со входом второго, выход второго соединяется со входом третьего и т. д. Для установки многоразрядного счетчика в нулевое состояние входы объединяются и подключаются к кнопке «Уст. 0».

Если, например, прибор предполагается использовать на уроках физики, то время нужно измерять в довольно широком диапазоне - от 0,001 до 100 с. Для этого генератор должен иметь частоту а счетчик должен состоять из пяти десятичных разрядов. При этом показания цифрового индикатора будут иметь следующий вид: 00,000; 00,001; 00,002 и т.д. до 99,999 с.

Область применения учебного счетчика-секундомера можно значительно расширить, если ввести в него два дополнительных устройства - блок бесконтактного управления и блок выдержек времени. Первый блок должен обеспечивать автоматическое и безинерционное включение и отключение прибора. Для этого можно использовать уже известную схему фотореле (рис. 76), выбрав нужную чувствительность и согласовав напряжения источников питания. В схеме управления должно быть два фотодатчика - один используется для включения, а другой для выключения счетчика-секундомера в моменты пересечения лучей движущимся телом. Зная расстояние между фотодатчиками и показания секундомера, легко вычислить скорость движения тела. В блоке-приставке используются два усилителя фототока. Их выходные сигналы управляют работой счетного триггера, один из выходов которого через транзисторный ключ соединен со входом секундомера.

Можно привести также другие примеры использования электронных счетчиков. Например, автомат, моделирующий игру «в кости», состоит уже рассмотренной декады на

И неоновой лампы управляемой импульсами мультивибратора (см. рис. 168, 172). Игроки поочередно нажимают кнопку прерывающую счет. Выигрывает тот, у кого индикатор покажет большее число. Момент остановки счетчика, как и момент остановки подбрасываемого кубика с точками от 1 до 6, определяется случайными причинами, поэтому счетная декада вместе с мультивибратором являются электронным датчиком случайных чисел. Приведем еще примеры ее использования в различных игровых ситуациях.

При проверке скорости реакции игроков резистором устанавливается определенная частота работы мультивибратора и скорость смены цифр индикатора (см. рис. 168 и 172). Участникам игры предлагается нажимать на кнопку мультивибратора каждый раз, как индикатор покажет определенную, заранее выбранную цифру. Выполнить поставленное условие тем сложнее, чем выше частота переключения. Первыми выбывают из игры наиболее медлительные, победителем становится игрок, обла дающий лучшей реакцией. В другом, более сложном варианте игры нужно продолжать нажатия кнопки в установленном судьей темпе после того, как исчезают показания индикатора. Для этого его закрывают механической шторкой или отключают кнопкой

Счетную декаду вместе с мультивибратором особенно удобно использовать в играх, если ее питание сделать автономным, т. е. не связанным с сетью. В этом случае используют семисегментный светодиодный индикатор управляемый дешифратором интегральной схемы . С этой микросхемой и индикатором мы уже знакомы (рис. 150, 163). Схемы мультивибратора и счетчика остаются неизменными. Схема датчика случайных чисел, работающего от источника с напряжением 5 В, показана на рисунке 173.

Примером более сложного устройства, работающего на основе электрического счетчика, является блок выдержки времени, или таймер. На рисунке 174 показана принципиальная схема таймера, позволяющего включать различную нагрузку на время от 0 до 999 с. Он состоит из трехразрядного десятичного счетчика, собранного на микросхеме трех дешифраторов на микросхеме мультивибратора и схемы управления на микросхеме а также микросхеме Источником счетных импульсов является мультивибратор, настроенный на частоту 1 Гц. Его импульсы подаются на вход трехразрядного десятичного счетчика. Двоичные коды с каждого разряда подаются на дешифраторы На их выходах последовательно пояезляются нулевые сигналы по мере поступления на входы

Рис. 173. Пересчетная декада со светодиодным индикатором

соответствующих двоичных кодов. Установка нужной выдержки времени осуществляется переключателями соединяющими выходы дешифраторов с элементами микросхемы Входы элементов И попарно соединены для получения элемента Переключателем устанавливаются единицы секунд, переключателем десятки секунд и переключателем сотни секунд. Если, например, переключатели соединяются с выводами 2, 3 и 7 дешифраторов, то на входах элемента ИЛИ-НЕ будут три 0 только в момент, когда счетчик зафиксирует 237 импульсов или пройдет промежуток времени, равный 237 секундам с момента начала счета. При этом на выходе элемента ИЛИ-НЕ появится сигнал 1. До этого момента при всех двоичных кодах счетчика на выходе логического элемента был нулевой сигнал.

Схема управления таймера работает следующим образом. Предварительно нажимается кнопка «Стоп», в результате RS-триггер, собранный по микросхеме устанавливается в нулевое состояние. С прямого выхода нулевой уровень напряжения подается на транзистор 1/77, в эмиттерную цепь которого включена обмотка электромагнитного реле. Транзистор и реле находятся в выключенном состоянии. Одновременно с этим на инверсном выходе 6 появляется высокий уровень, который служит сигналом сброса для счетчика. При нажатии кнопки «Пуск» RS-триггер переходит в единичное состояние, на прямом выходе 3 появляется. высокий уровень напряжения, достаточный для открывания транзистора 1/77 и срабатывания реле. Его контакты замыкают цепь питания нагрузки. Одновременно с этим

(кликните для просмотра скана)

нулевой уровень напряжения, снимаемый с инверсного выхода триггера, «открывает» счетчик. Счетчик работает до тех пор, пока на выходах дешифратора не появятся выходные сигналы, соответствующие набранному числу. В. этом случае, как уже говорилось, на выходе возникает единичный сигнал, который через инвертер подается на вход -триггера. Происходит его установка в нулевое состояние и, соответственно, выключение транзистора, электромагнитного реле и нагрузки. Счетчик устанавливается в нулевое состояние.

Таймер будет показывать текущее время в секундах, если к выходам дешифраторов подключить светодиоды. Отсчет времени станет более удобным, если двоично-десятичные коды счетчиков подать на дешифраторы работающие совместно с семи-сегментными индикаторами

Это устройство предназначено для подсчета числа оборотов вала механического устройства. Кроме простого подсчета с индикацией на светодиодном табло в десятичных числах, счетчик выдает информацию о числе оборотов в двоичном десятиразрядном коде, что может быть использовано при конструировании автоматического устройства. Счетчик состоит из оптического датчика оборотов, представляющего собой оптопару из постоянно светящегося ИК-светодиода и фотодиода, между которыми расположен диск из непрозрачного материала, в котором вырезан сектор. Диск закреплен на валу механического устройства, количество оборотов которого нужно считать. И, комбинации из двух счетчиков, - десятичного трехразрядного с выводом на светодиодные семисегментные индикаторы, и двоичного десятиразрядного. Счетчики работают синхронно, но независимо друг от друга. Светодиод HL1 излучает непрерывный световой поток, которые поступает на фотодиод через прорезь в измерительном диске. При вращении диска получаются импульсы, а поскольку, прорезь в диске одна, то число этих импульсов равно числу оборотов диска. Триггер Шмитта на D1.1 и D1.2 преобразует импульсы напряжения на R2, вызванные изменением фототока через фотодиод, в импульсы логического уровня, пригодные для восприятия счетчиками серии К176 и К561. Число импульсов (число оборотов диска) одновременно подсчитывает двумя счетчиками - трехдекадным десятичным на микросхемах D2-D4 и двоичным на D5. Информация о числе оборотов выводится на цифровое табло, составленное из трех семисегментных светодиодных индикаторов Н1-Н3, и в виде десятиразрядного двоичного кода, который снимается с выходов счетчика D5. Обнуление всех счетчиков в момент включения питания происходит одновременно, чему способствует наличие элемента D1.3. При потребности в кнопке обнуления, её можно подключить параллельно конденсатору С1. Если нужно, чтобы сигнал обнуления поступал от внешнего устройства или логической схемы, нужно микросхему К561ЛЕ5 заменить на К561ЛА7, и отсоединить её вывод 13 от вывода 12 и С1. Теперь обнуление можно будет сделать, подав, от внешнего логического узла, логический ноль на вывод 13 D1.3. В схеме можно использовать другие светодиодные семисегментные индикаторы, аналогичные АЛС324. Если индикаторы с общим катодом, - нужно на выводы 6 D2-D4 подать не единицу, а ноль. Микросхемы К561 можно заменить аналогами серий К176, К1561 или импортными аналогами. Светодиод - любой ИК-светодиод (от пульта ДУ аппаратуры). Фотодиод - любой из тех, что использовался в системах ДУ телевизоров типа УСЦТ. Настройка состоит в установке чувствительности фотодиода подбором номинала R2.

Радиоконструктор №2 2003г стр. 24

Как и триггеры, счетчики совсем необязательно составлять из логических элементов вручную – сегодняшняя промышленность выпускает самые разнообразные счетчики уже собранные в корпуса микросхем. В этой статье я не буду останавливаться на каждой микросхеме-счетчике отдельно (в этом нет необходимости, да и времени займет слишком много), а просто кратко рассажу на что можно рассчитывать, во время решения тех или иных задач цифровой схемотехники. Тех же, кого интересует конкретные типы микросхем-счетчиков, я могу отправить к своему далеко неполному справочнику по ТТЛ и КМОП микросхемам.

Итак, исходя из полученного в предыдущем разговоре опыта, мы выяснили один из главных параметров счетчика – разрядность. Для того, чтобы счетчик смог считать до 16 (с учетом нуля – это тоже число) нам понадобилось 4 разряда. Добавление каждого последующего разряда будет увеличивать возможности счетчика ровно вдвое. Таким образом, пятиразрядный счетчик сможет считать до 32, шести – до 64. Для вычислительной техники оптимальной разрядностью является разрядность, кратная четырем. Это не есть золотым правилом, но все же большинство счетчиков, дешифраторов, буферов и т.п. строятся четырех (до 16) или восьмиразрядными (до 256).

Но поскольку цифровая схемотехника не ограничивается одними ЭВМ, нередко требуются счетчики с самым различным коэффициентом счета: 3, 10, 12, 6 и т.д. К примеру, для построения схем счетчиков минут нам понадобится счетчик на 60, а его несложно получить, включив последовательно счетчик на 10 и счетчик на 6. Может нам понадобиться и большая разрядность. Для этих случаев, к примеру, в КМОП серии есть готовый 14-ти разрядный счетчик (К564ИЕ16), который состоит из 14-ти D-триггеров, включенных последовательно и каждый выход кроме 2 и 3-го выведен на отдельную ножку. Подавай на вход импульсы, подсчитывай и читай при необходимости показания счетчика в двоичном счислении:

К564ИЕ16

Для облегчения построения счетчиков нужной разрядности некоторые микросхемы могут содержать несколько отдельных счетчиков. Взглянем на К155ИЕ2 – двоично-десятичный счетчик (по-русски – «счетчик до 10, выводящий информацию в двоичном коде»):

Микросхема содержит 4 D- триггера, причем 1 триггер (одноразрядный счетчик – делитель на 2) собран отдельно – имеет свой вход (14) и свой выход (12). Остальные же 3 триггера собраны так, что делят входную частоту на 5. Для них вход – вывод 1, выходы 9, 8,11. Если нам нужен счетчик до 10, то просто соединяем выводы 1 и 12, подаем счетные импульсы на вывод 14 а с выводов12, 9, 8, 11 снимаем двоичный код, который будет увеличиваться до 10, после чего счетчики обнулятся и цикл повторится. Составной счетчик К155ИЕ2 не является исключением. Аналогичный состав имеет и, к примеру, К155ИЕ4 (счетчик до 2+6) или К155ИЕ5 (счетчик до 2+8):

Практически все счетчики имеют входы принудительного сброса в «0», а некоторые и входы установки на максимальное значение. Ну и напоследок я просто обязан сказать, что некоторые счетчики могут считать и туда и обратно! Это так называемые реверсивные счетчики, которые могут переключаться для счета как на увеличение (+1), так и на уменьшение (-1). Так умеет, к примеру, двоично-десятичный реверсивный счетчик К155ИЕ6:

При подаче импульсов на вход +1 счетчик будет считать вперед, импульсы на входе -1 будут уменьшать показания счетчика. Если при увеличении показаний счетчик переполнится (11 импульс), то прежде чем вернуться в ноль, он выдаст на вывод 12 сигнал «перенос», который можно подать на следующий счетчик для наращивания равзрядности. То же назначение и у вывода 13, но на нем импульс появится во время перехода счета через ноль при счете в обратном направлении.

Обратите внимание, что кроме входов сброса микросхема К155ИЕ6 имеет входы записи в нее произвольного числа (выводы 15, 1, 10, 9). Для этого достаточно установить на этих входах любое число 0 — 10 в двоичном счислении и подать импульс записи на вход С.

Все знают для чего существует микрокалькулятор,но оказывается кроме математических вычислений он способен и на многое другое. Обратите внимание, если нажать кнопку «1», затем «+» и далее нажимать «=», то с каждым нажатием на кнопку «=» число на дисплее будет увеличиваться на единицу. Чем не цифровой счетчик?

Если к кнопке «=» подпаять два проводка, их можно будет использовать как вход счетчика, например, счетчика витков для намоточного станка. И ведь, счетчик может быть и реверсивным, для этого нужно сначала набрать на дисплее число, например, число витков катушки, а затем нажать кнопку « - », и кнопку «1». Теперь при каждом нажатии на «=» число будет уменьшаться на единицу.

Однако, нужен датчик. Самый простой вариант, - геркон (рис.1). Геркон проводами подключаем параллельно кнопке «=», сам геркон стоит на неподвижной части намоточного станка, а магнит закрепим на подвижной, так что бы за один оборот катушки магнит один раз проходил возле геркона, вызывая его замыкание.

Вот и все. Нужно намотать катушку, делаем «1+» и далее с каждым оборотом, то есть, с каждым витком показания дисплея будут увеличиваться на единицу. Нужно отмотать катушку, - набираем на дисплее микрокалькулятора число витков катушки, и делаем «-1», далее с каждым оборотом размотки катушки показания дисплея будут уменьшаться на единицу.

Рис.1. Схема подключения геркона к калькулятору.

А, предположим, нужно измерить большое расстояние, например, длину дороги, размер земельного участка, длину маршрута. Берем обычный велосипед. Правильно, - на вилке крепим неметаллический кронштейн с герконом, а магнит закрепляем на одной из спиц велосипедного колеса. Затем, измеряем длину окружности колеса, и выраженную её в метрах, например, получилась длина окружности колеса 1,45 метра, так и набираем «1,45+», после чего с каждым оборотом колеса показания дисплея будут увеличиваться на 1,45 метра, и в результате на дисплее будет видно пройденное велосипедом расстояние в метрах.

Если есть неисправный китайский кварцевый будильник (обычно механизм у них очень не долговечный, а вот электронная плата весьма надежна), можно взять от него плату и по схеме показанной на рисунке 2 сделать из неё и калькулятора секундомер.

Питание на плату будильника поступает через параметрический стабилизатор на светодиоде HL1 (светодиод должен быть с прямым напряжением 1,4-1,7V, например, красный АЛ307) и резисторе R2.

Импульсы формируются из импульсов управления шаговым двигателем часового механизма (катушки должны быть отключены, плата используется самостоятельно). Эти импульсы через диоды VD1 и VD2 поступают на базу транзистора VТ1. Напряжение питания платы будильника всего 1,6V, при этом уровни импульсов на выходах для шагового двигателя еще ниже.

Чтобы схема нормально работала, необходимы диоды с низким уровнем прямого напряжения, такие как ВАТ85, или германиевые.

Эти импульсы поступают на транзисторный ключ на VТ1 и VТ2. В коллекторной цепи VТ2 включена обмотка маломощного реле К1, контакты которого подключены параллельно кнопке «=» микрокалькулятора. Когда есть питание +5V контакты реле К1 будут замыкаться с частотой 1 Гц.

Чтобы запустить секундомер нужно предварительно сделать действие «1+», затем выключателем S1 включить питание схемы формирователя импульсов. Теперь с каждой секундой показания дисплея будут увеличиваться на единицу.

Чтобы остановить счет достаточно выключить питание формирователя импульсов выключателем S1.

Чтобы был счет на уменьшение, нужно сначала набрать на дисплее микрокалькулятора исходное число секунд, а потом сделать действие «-1» и включить питание формирователя импульсов выключателем S1. Теперь с каждой секундой показания дисплея будут убывать на единицу, и по ним можно будет судить, сколько времени осталось до некоторого события.

Рис.2. Схема превращения китайского бодульника в секундомер.

Рис.3. Схема счетчика пересечений ИК-луча с применением калькулятора.

Если использовать инфракрасный фотодатчик, работающий на пересечение луча, можно приспособить микрокалькулятор считать какие-то предметы, например, коробки, перемещающиеся по транспортерной ленте, либо, установив датчик в проходе, считать входящих в помещение людей.

Принципиальная схема ИК-датчика отражения для работы с микрокалькулятором показана на рисунке 3.

Генератор ИК-сигнала выполнен на микросхеме А1 типа «555» (интегральный таймер) Он представляет собой генератор импульсов частотой 38 кГц, на выходе которого включен через ключ инфракрасный светодиод. Частота генерации зависит от цепи C1-R1, при налаживании подбором резистора R1 нужно установить на выходе микросхемы (вывод 3) частоту близкую к 38 кГц. Светодиод HL1 помещают с одной стороны прохода, надев на него непрозрачную трубку, которая должна быть точно направлена на фотоприемник.

Фотоприемник выполнен на микросхеме HF1 - это стандартный интегральный фотоприемник типа TSOP4838 для систем дистанционного управления телевизоров и другой домашней техники. Когда на этот фотоприемник попадает луч от HL1, на его выходе - ноль. При отсутствии луча -единица.

Таким образом, между HL1 и HF1 ничего нет - контакты реле К1 разомкнуты, а в момент прохождения какого-либо объекта - контакты реле замыкаются. Если на микрокалькуляторе сделать действие «1+», то с каждым прохождением объекта между HL1 и HF1 показания дисплея микрокалькулятора будут увеличиваться на единицу, и по ним можно будет судить, сколько коробок отгружено или сколько человек вошло.

Крюков М.Б. РК-2016-01.